
【国外标准】 Standard Test Method for Resistance to Environmental Degradation of Electrical Pressure Connections Involving Aluminum and Intended for Residential Applications
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The principal underlying the test is the sensitivity of the electrical contact interface to temperature and humidity cycling that electrical pressure connection systems experience as a result of usage and installation environment. The temperature cycling may cause micromotion at the mating electrical contact surfaces which can expose fresh metal to the local ambient atmosphere. The humidity exposure is known to facilitate corrosion on freshly exposed metal surfaces. Thus, for those connection systems that do not maintain stable metal-to-metal contact surfaces under the condition of thermal cycling and humidity exposure, repeated sequences of these exposures lead to degradation of the contacting surface indicated by potential drop increase.5.2 The test is of short duration relative to the expected life of connections in residential usage. Stability of connection resistance implies resistance to deterioration due to environmental conditions encountered in residential service. Increasing connection resistance as a result of the test exposure indicates deterioration of electrical contact interfaces. Assurance of long term reliability and safety of connection types that deteriorate requires further evaluation for specific specified environments and applications.5.3 Use—It is recommended that this test method be used in one of two ways. First, it may be used to evaluate and report the performance of a particular connection system. For such use, it is appropriate to report the results in a summary (or tabular) format such as shown in Section 17, together with the statement “The results shown in the summary (or table) were obtained for (insert description of connection) when tested in accordance with Test Method B812. Second, it may be used as the basis for specification of acceptability of product. For this use, the minimum test time and the maximum allowable increase in potential drop must be established by the specifier. Specification of connection systems in accordance with this use of the standard test method would be of the form: “The maximum potential drop increase for any connection, when tested in accordance with Test Method B812 for a period of weeks, shall be mV relative to the reference connections.” Connection systems that are most resistant to thermal-cycle/humidity deterioration, within the limitations of determination by this test method, show no increase in potential drop, relative to the reference connections, when tested for indefinite time. Connections that are less resistant to thermal-cycle/humidity conditions applied by this test will demonstrate progressive increases in potential drop with increasing time on test. Thus, the following examples of specifications are in the order of most stringent (No. 1) to least stringent (No. 3). Duration, weeks Maximum Potential Drop Increase, mV1. 52 02. 16 0.23. 4 1.01.1 This test method covers all residential pressure connection systems. Detailed examples of application to specific types of connection systems, set-screw neutral bus connectors and twist-on wire-splicing connectors, are provided in Appendix X1 and Appendix X2.1.2 The purpose of this test method is to evaluate the performance of residential electrical pressure connection systems under conditions of cyclic temperature change (within rating) and high humidity.1.3 The limitations of the test method are as follows:1.3.1 This test method shall not be considered to confirm a specific lifetime in application environments.1.3.2 The applicability of this test method is limited to pressure connection systems rated at or below 600 V d-c or a-c RMS.1.3.3 This test method is limited to temperature and water vapor exposure in addition to electrical current as required to measure connection resistance.1.3.4 This test method does not evaluate degradation which may occur in residential applications due to exposure of the electrical connection system to additional environmental constituents such as (but not limited to) the following examples:1.3.4.1 Household chemicals (liquid or gaseous) such as ammonia, bleach, or other cleaning agents.1.3.4.2 Chemicals as may occur due to normal hobby or professional activities such as photography, painting, sculpture, or similar activities.1.3.4.3 Environments encountered during construction or remodeling such as direct exposure to rain, uncured wet concrete, welding or soldering fluxes and other agents.1.3.5 This test method is limited to evaluation of pressure connection systems.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.5 This standard should be used to measure and describe the properties of materials, products, or assemblies in response to electrical current flow under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual installation conditions or under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM B812-18
标准名称:
Standard Test Method for Resistance to Environmental Degradation of Electrical Pressure Connections Involving Aluminum and Intended for Residential Applications
英文名称:
Standard Test Method for Resistance to Environmental Degradation of Electrical Pressure Connections Involving Aluminum and Intended for Residential Applications标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E747-18 Standard Practice for Design, Manufacture and Material Grouping Classification of Wire Image Quality Indicators (IQI) Used for Radiology
- ASTM E749/E749M-17(2021) Standard Practice for Acoustic Emission Monitoring During Continuous Welding
- ASTM E751/E751M-17(2022) Standard Practice for Acoustic Emission Monitoring During Resistance Spot-Welding
- ASTM E756-05(2023) Standard Test Method for Measuring Vibration-Damping Properties of Materials
- ASTM E759/E759M-92(2023) Standard Test Method for Effect of Deflection on Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E760/E760M-92(2023) Standard Test Method for Effect of Impact on Bonding of Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E761/E761M-92(2023) Standard Test Method for Compressive Strength of Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E768-99(2018) Standard Guide for Preparing and Evaluating Specimens for Automatic Inclusion Assessment of Steel
- ASTM E776-23 Standard Test Method for Determination of Forms of Chlorine in Refuse-Derived Fuel
- ASTM E778-15(2021) Standard Test Methods for Nitrogen in Refuse-Derived Fuel Analysis Samples
- ASTM E779-19 Standard Test Method for Determining Air Leakage Rate by Fan Pressurization
- ASTM E780-17(2021) Standard Test Method for Measuring the Insulation Resistance of Mineral-Insulated, Metal-Sheathed Thermocouples and Mineral-Insulated, Metal-Sheathed Cable at Room Temperature
- ASTM E781-86(2023) Standard Practice for Evaluating Absorptive Solar Receiver Materials When Exposed to Conditions Simulating Stagnation in Solar Collectors with Cover Plates
- ASTM E782-95(2022) Standard Practice for Exposure of Cover Materials for Solar Collectors to Natural Weathering Under Conditions Simulating Operational Mode
- ASTM E784-89(2022) Standard Specification for Clamps, Utility, Laboratory, and Holders, Buret and Clamp