
【国外标准】 Standard Test Method for Evaluating Concrete Pavement Dowel Bar Alignment Using Magnetic Pulse Induction
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Joints in concrete pavements of highways, airfields, and other facilities are exposed to stresses and strains due to traffic and temperature variation. Examining concrete pavement dowel bars (see Specifications A615/A615M and A1078/A1078M) in joints is important to ensure that load transfer at joints between concrete slabs occurs efficiently in order to prevent damage to the pavement and thus shortening its service life. Using magnetic pulse induction (MPI) to examine dowel bars provides owners and contractors a nondestructive testing method to determine that the bars are installed correctly. MPI examination can be performed on existing joints and can support forensic investigations into pavement failures.5.2 The use of MPI methods and equipment provides a quality control process for installers to use to document that dowel bars are installed correctly in new pavements. Owners use the same device to perform quality assurance activities and accept installed facilities from contractors.5.3 MPI devices provide reliable quantitative results that are repeatable with not only the same device but also with other calibrated MPI devices.1.1 This test method covers the equipment, field procedures, and interpretation methods for the assessment of portland cement concrete pavement dowel bar alignment using magnetic pulse induction (MPI), also referred to as magnetic imaging tomography or eddy current tomography. Magnetic pulse induction (MPI) devices induce a weak-pulsed magnetic field that causes the induction of eddy currents in metal objects disturbing the field. When metal (dowel bar) enters into the field, an electrical signal is produced and processed through algorithms to detect and produce quantitative values for the depth, alignment, and side shift locations of each dowel and tie bar present in the pavement joint.1.2 MPI equipment includes the following: systems scanning device that induces the magnetic field and collects the electrical signal; orientation system such as a rail system; field data collection device that collects the signal data from the scanner, performs field analysis, and stores data; analysis software package that calculates the dowel bar positions, allows data adjustments to account for detected anomalies, and produces reports.1.3 MPI field procedures describe the steps and processes required to collect reliable, repeatable, and accurate results from the scanner operation and orientation system. Critical to the accuracy is the absence of any metal items except for the dowel bars in the vicinity of the joints being tested. Metal in the scanner and orientation system should be minimized. The scanner operation procedures cover the collecting of the data, reviewing the results on the field data collector, and determining if the data collection test was successful.1.4 MPI interpretation methods describe how to analyze data collected in the field procedure, steps taken to address interferences, and anomalies discovered during the data analysis to provide accurate results for the dowel bar positions. Also, minimum report content is prescribed for the production of meaningful test information substantiating the results.1.5 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E3013/E3013M-17(2022)
标准名称:
Standard Test Method for Evaluating Concrete Pavement Dowel Bar Alignment Using Magnetic Pulse Induction
英文名称:
Standard Test Method for Evaluating Concrete Pavement Dowel Bar Alignment Using Magnetic Pulse Induction标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E747-18 Standard Practice for Design, Manufacture and Material Grouping Classification of Wire Image Quality Indicators (IQI) Used for Radiology
- ASTM E749/E749M-17(2021) Standard Practice for Acoustic Emission Monitoring During Continuous Welding
- ASTM E751/E751M-17(2022) Standard Practice for Acoustic Emission Monitoring During Resistance Spot-Welding
- ASTM E756-05(2023) Standard Test Method for Measuring Vibration-Damping Properties of Materials
- ASTM E759/E759M-92(2023) Standard Test Method for Effect of Deflection on Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E760/E760M-92(2023) Standard Test Method for Effect of Impact on Bonding of Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E761/E761M-92(2023) Standard Test Method for Compressive Strength of Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E768-99(2018) Standard Guide for Preparing and Evaluating Specimens for Automatic Inclusion Assessment of Steel
- ASTM E776-23 Standard Test Method for Determination of Forms of Chlorine in Refuse-Derived Fuel
- ASTM E778-15(2021) Standard Test Methods for Nitrogen in Refuse-Derived Fuel Analysis Samples
- ASTM E779-19 Standard Test Method for Determining Air Leakage Rate by Fan Pressurization
- ASTM E780-17(2021) Standard Test Method for Measuring the Insulation Resistance of Mineral-Insulated, Metal-Sheathed Thermocouples and Mineral-Insulated, Metal-Sheathed Cable at Room Temperature
- ASTM E781-86(2023) Standard Practice for Evaluating Absorptive Solar Receiver Materials When Exposed to Conditions Simulating Stagnation in Solar Collectors with Cover Plates
- ASTM E782-95(2022) Standard Practice for Exposure of Cover Materials for Solar Collectors to Natural Weathering Under Conditions Simulating Operational Mode
- ASTM E784-89(2022) Standard Specification for Clamps, Utility, Laboratory, and Holders, Buret and Clamp