
【国外标准】 Standard Practice for Making and Curing Concrete Test Specimens in the Field
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This practice provides standardized requirements for making, and curing test specimens in the field. This practice also provides requirements for transporting test specimens to the laboratory, and for curing test specimens in the laboratory. Depending on their purpose, test specimens are either standard-cured, or field-cured.4.2 Uses of the test results of standard-cured test specimens include the following purposes:4.2.1 Acceptance testing for specified concrete strength,NOTE 2: Specification C94/C94M requires compressive-strength test specimens for acceptance to be standard-cured.4.2.2 Checking adequacy of mixture proportions for concrete strength, and4.2.3 Quality control.4.3 Uses of test results of field-cured test specimens include:4.3.1 Estimation of the in place concrete strength,4.3.2 Comparison with test results of standard cured specimens or with test results from various in-place test methods,4.3.3 Adequacy of curing and protection of concrete in the structure,4.3.4 Form or shoring removal time requirements, or4.3.5 Post-tensioning.1.1 This practice covers procedures for making and curing cylinder and beam specimens from representative samples of fresh concrete for a construction project.1.2 This practice is not intended for making specimens from concrete not having measurable slump or requiring other sizes or shapes of specimens.1.3 This practice is not applicable to lightweight insulating concrete or controlled low strength material (CLSM).NOTE 1: Test Method C495/C495M covers the preparation of specimens and the determination of the compressive strength of lightweight insulating concrete. Test Method D4832 covers procedures for the preparation, curing, transporting and testing of cylindrical test specimens of CLSM.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to exposed skin and tissue upon prolonged exposure.2)1.6 The text of this standard references notes which provide explanatory material. These notes shall not be considered as requirements of the standard.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C31/C31M-24
标准名称:
Standard Practice for Making and Curing Concrete Test Specimens in the Field
英文名称:
Standard Practice for Making and Curing Concrete Test Specimens in the Field标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
- ASTM A102-04(2019) Standard Specification for Ferrovanadium
- ASTM A1021/A1021M-20 Standard Specification for Martensitic Stainless Steel Forgings and Forging Stock for High-Temperature Service