
【国外标准】 Standard Test Method for Calibration of a Pyranometer Using a Pyrheliometer
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 The pyranometer is a radiometer designed to measure the sum of directly solar radiation and sky radiation in such proportions as solar altitude, atmospheric conditions and cloud cover may produce. When tilted to the equator, by an angle β, pyranometers measure only hemispherical radiation falling in the plane of the radiation receptor.4.2 This test method represents the only practical means for calibration of a reference pyranometer. While the sun-trackers, the shading disk, the number of instantaneous readings, and the electronic display equipment used will vary from laboratory to laboratory, the method provides for the minimum acceptable conditions, procedures and techniques required.4.3 While, in theory, the choice of tilt angle (β) is unlimited, in practice, satisfactory precision is achieved over a range of tilt angles close to the zenith angles used in the field.4.4 The at-tilt calibration as performed in the tilted position relates to a specific tilted position and in this position requires no tilt correction. However, a tilt correction may be required to relate the calibration to other orientations, including axis vertical.NOTE 1: WMO High Quality pyranometers generally exhibit tilt errors of less than 0.5 %. Tilt error is the percentage deviation from the responsivity at 0° tilt (horizontal) due to change in tilt from 0° to 90° at 1000 W·m23.4.5 Traceability of calibrations to the World Radiometric Reference (WRR) is achieved through comparison to a reference absolute pyrheliometer that is itself traceable to the WRR through one of the following:4.5.1 One of the International Pyrheliometric Comparisons (IPC) held in Davos, Switzerland since 1980 (IPC IV). See Refs (3-7).4.5.2 Any like intercomparison held in the United States, Canada or Mexico and sanctioned by the World Meteorological Organization as a Regional Intercomparison of Absolute Cavity Pyrheliometers.4.5.3 Intercomparison with any absolute cavity pyrheliometer that has participated in either and IPC or a WMO-sanctioned intercomparison within the past five years and which was found to be within ±0.4 % of the mean of all absolute pyrheliometers participating therein.4.6 The calibration method employed in this test method assumes that the accuracy of the values obtained are independent of time of year, with the constraints imposed and by the test instrument's temperature compensation circuit (neglecting cosine errors).1.1 This test method covers an integration of previous Test Method E913 dealing with the calibration of pyranometers with axis vertical and previous Test Method E941 on calibration of pyranometers with axis tilted. This amalgamation of the two methods essentially harmonizes the methodology with ISO 9846.1.2 This test method is applicable to all pyranometers regardless of the radiation receptor employed, and is applicable to pyranometers in horizontal as well as tilted positions.1.3 This test method is mandatory for the calibration of all secondary standard pyranometers as defined by the World Meteorological Organization (WMO) and ISO 9060, and for any pyranometer used as a reference pyranometer in the transfer of calibration using Test Method E842.1.4 Two types of calibrations are covered: Type I calibrations employ a self-calibrating, absolute pyrheliometer, and Type II calibrations employ a secondary reference pyrheliometer as the reference standard (secondary reference pyrheliometers are defined by WMO and ISO 9060).1.5 Calibrations of reference pyranometers may be performed by a method that makes use of either an altazimuth or equatorial tracking mount in which the axis of the radiometer's radiation receptor is aligned with the sun during the shading disk test.1.6 The determination of the dependence of the calibration factor (calibration function) on variable parameters is called characterization. The characterization of pyranometers is not specifically covered by this method.1.7 This test method is applicable only to calibration procedures using the sun as the light source.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM G167-15(2023)
标准名称:
Standard Test Method for Calibration of a Pyranometer Using a Pyrheliometer
英文名称:
Standard Test Method for Calibration of a Pyranometer Using a Pyrheliometer标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation