
【国外标准】 Standard Test Method for Resistance of Materials Used in Protective Clothing to Penetration by Blood-Borne Pathogens Using Phi-X174 Bacteriophage Penetration as a Test System
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method is based on Test Method F903 for measuring resistance of chemical protective clothing materials to penetration by liquids. This test method is normally used to evaluate specimens from individual finished items of protective clothing and individual samples of materials that are candidates for items of protective clothing.5.1.1 Finished items of protective clothing include gloves, arm shields, aprons, gowns, coveralls, hoods, and boots.5.1.2 The phrase “specimens from finished items” encompasses seamed and other discontinuous regions, as well as the usual continuous regions of protective clothing items.5.2 It is known that body fluids penetrating protective clothing materials are likely to carry microbiological contaminants; however, visual detection methods are not sensitive enough to detect minute amounts of liquid containing microorganisms (1-3).7 This test method uses media containing Phi-X174 Bacteriophage. The visual detection technique of this test method is supplemented with a biologically based assay capable of detecting virus under the specified test conditions.5.3 Test Method F1670/F1670M allows the screening of protective clothing materials for resistance to penetration with synthetic blood as a challenge liquid. Test Method F1670/F1670M uses the same penetration test cell and technique, but exposes material specimens to synthetic blood with visual detection of liquid penetration. Materials passing Test Method F1670/F1670M should then be tested against bacteriophage penetration using this test method to verify performance.5.4 This test method has been specifically designed for measuring penetration of a surrogate microbe for Hepatitis (B and C) and the Human Immunodeficiency Viruses. The surrogate, Phi-X174 Bacteriophage, used in this test method is similar to HCV in size and shape but also serves as a surrogate for HBV and HIV. Inferences about protection from other pathogens must be assessed on a case-by-case basis.5.5 Part of the protocol in Procedures A and B in Table 1 for exposing the protective clothing material specimens to the Phi-X174 Bacteriophage challenge suspension involves pressurization of the penetration cell to 13.8 kPa [2 psig]. This hydrostatic pressure has been documented to discriminate between protective clothing material performance and correlate with visual penetration results that are obtained with a human factors validation (4). Some studies, however, suggest that mechanical pressures exceeding 345 kPa [50 psig] can occur during actual clinical use (5, 6). Therefore, it is important to understand that this test method does not simulate all the physical stresses and pressures that might be exerted on protective clothing materials during actual use.5.6 Medical protective clothing materials are intended to be a barrier to blood, body fluids, and other potentially infectious materials. Many factors can affect the wetting and penetration characteristics of body fluids, such as surface tension, viscosity, and polarity of the fluids, as well as the structure and relative hydrophilicity or hydrophobicity of the materials. The surface tension range for blood and body fluids (excluding saliva) is approximately 0.042 to 0.060 N/m (7). To help simulate the wetting characteristics of blood and body fluids, the surface tension of the Phi-X174 Bacteriophage challenge suspension is adjusted to approximate the lower end of this surface tension range. This is accomplished by adding surfactant to the Phi-X174 Bacteriophage nutrient broth. The resulting surface tension of the Phi-X174 Bacteriophage challenge suspension is approximately 0.042 ± 0.002 N/m.5.7 Testing prior to degradation by physical, chemical, and thermal stresses which could negatively impact the performance of the protective material could lead to a false sense of security. Additional tests should be considered that assess the impact of storage conditions and shelf life on disposable products and the impact of laundering and sterilization on reusable products. The integrity of the protective barrier may also be compromised during use by such effects as flexing and abrasion (8). Prewetting agents, such as alcohol, and contaminating agents, such as perspiration, may also compromise the integrity of the protective barrier. If these conditions are of concern, the performance of protective clothing materials should be evaluated for Phi-X174 Bacteriophage penetration following an appropriate preconditioning technique representative of the expected conditions of use.5.8 This test method involves a sensitive assay procedure for determining protective clothing material resistance to penetration by a surrogate microbe. Because of the length of time required to complete this method, it may not be suitable for use as a material or protective clothing quality control or quality assurance procedure.5.9 If this procedure is used for quality control or to support broad product claims concerning the viral-resistant properties of materials used in protective clothing, proper statistical design and analysis of larger data sets than those specified in this test method should be performed.8 Examples of acceptable sampling plans can be found in MIL-STD-105, ANSI/ASQ Z1.4, and ISO 2859-1.5.10 This test method requires a working knowledge of basic microbiological techniques (9).1.1 This test method is used to measure the resistance of materials used in protective clothing to penetration by blood-borne pathogens using a surrogate microbe under conditions of continuous liquid contact. Protective clothing material pass/fail determinations are based on the detection of viral penetration.1.1.1 This test method is not always effective in testing protective clothing materials having thick, inner liners which readily absorb the liquid assay fluid.1.2 This test method does not apply to all forms or conditions of blood-borne pathogen exposure. Users of the test method should review modes for worker/clothing exposure and assess the appropriateness of this test method for their specific applications.1.3 This test method has been specifically defined for modeling the viral penetration of Hepatitis (B and C) and Human Immunodeficiency Viruses transmitted in blood and other potentially infectious body fluids. Inferences for protection from other pathogens must be assessed on a case-by-case basis.1.4 This test method addresses only the performance of materials or certain material constructions (for example, seams) used in protective clothing and determined to be viral resistant. This test method does not address the design, overall construction and components, or interfaces of garments or other factors which may affect the overall protection offered by the protective clothing.1.5 The values stated in SI units or in other units shall be regarded separately as standard. The values stated in each system must be used independently of the other, without combining values in any way.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F1671/F1671M-22
标准名称:
Standard Test Method for Resistance of Materials Used in Protective Clothing to Penetration by Blood-Borne Pathogens Using Phi-X174 Bacteriophage Penetration as a Test System
英文名称:
Standard Test Method for Resistance of Materials Used in Protective Clothing to Penetration by Blood-Borne Pathogens Using Phi-X174 Bacteriophage Penetration as a Test System标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3016/F3016M-19 Standard Test Method for Surrogate Testing of Vehicle Impact Protective Devices at Low Speeds
- ASTM F3019/F3019M-19 Standard Specification for Chromium Free Zinc-Flake Composite, with or without Integral Lubricant, Corrosion Protective Coatings for Fasteners
- ASTM F302-09(2021) Standard Practice for Field Sampling of Aerospace Fluids in Containers
- ASTM F3021-17 Standard Specification for Universal Design of Fitness Equipment for Inclusive Use by Persons with Functional Limitations and Impairments
- ASTM F3022-16e1 Standard Test Method for Evaluating the Universal Design of Fitness Equipment for Inclusive Use by Persons with Functional Limitations and Impairments
- ASTM F3023-18 Standard Test Methods for Evaluating Design and Performance Characteristics of Stationary Upright and Recumbent Exercise Bicycles and Upper and Total Body Ergometers
- ASTM F3026-14(2019) Standard Guide for Helicopter Inland Search and Rescue (SAR) Crew Chief
- ASTM F3027-18 Standard Guide for Training of Personnel Operating in Mountainous Terrain (Mountain Endorsement)
- ASTM F3033-16(2021) Standard Practice for Installation of a Single-Sized, Cured-In-Place Liner Utilizing an Inflatable Bladder for Resurfacing Manhole Walls of Various Shapes and Sizes
- ASTM F3034-21 Standard Specification for Billets made by Winding Molten Extruded Stress-Rated High Density Polyethylene (HDPE)
- ASTM F3035-22 Standard Practice for Production Acceptance in the Manufacture of a Fixed Wing Light Sport Aircraft
- ASTM F3036-21 Standard Guide for Testing Absorbable Stents
- ASTM F3038-21 Standard Test Method for Timed Evaluation of Forced-Entry-Resistant Systems
- ASTM F3043-15 Standard Specification for “Twist Off” Type Tension Control Structural Bolt/Nut/Washer Assemblies, Alloy Steel, Heat Treated, 200 ksi Minimum Tensile Strength
- ASTM F3045-21 Standard Test Method for Evaluation of the Type and Viscoelastic Stability of Water-in-oil Mixtures Formed from Crude Oil and Petroleum Products Mixed with Water