
【国外标准】 Standard Test Method for Measurement of Transition Temperatures of Slack Waxes used in Equine Sports Surfaces by Differential Scanning Calorimetry (DSC)
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 DSC is a convenient and rapid method for determining the temperature limits within which a wax undergoes during transitions. The highest temperature transition is a solid-liquid transition associated with complete melting; it can guide the choice of wax binders used in synthetic equine sports surfaces, provide information on the effect of operational track temperatures on binder melting, as well as giving indications of changes in the binder over time. The solid-solid temperature transition is related to the properties of the solid, that is, hardness and blocking temperature, although these slack wax-wax based binders typically contain oil contents greater that 20 % by mass and consequently are not in a hardened state unless subjected to very cold temperatures (well below –17 °C).NOTE 2: For a relatively narrow cut petroleum wax, the lowest transition will be a solid-solid transition. A narrow cut wax is one obtained by de-oiling a single petroleum distillate with a maximum range of 49 °CF between its 5 and 95 % vol in accordance with Test Method D1160 boiling points (converted to 760 torr). The DSC method cannot differentiate between solid-liquid and solid-solid transitions. Such information must be predetermined by other techniques. In the case of blends, the lower temperature transition may be envelopes of both solid-liquid and solid-solid transitions.5.2 Since petroleum wax is a mixture of hydrocarbons with different molecular weights, its transitions occur over a temperature range. This range is one factor that influences the width, expressed in degrees Celsius, of the DSC peaks. The highest temperature transition is a first-order transition. If, for a series of waxes, there is supporting evidence that the highest temperature transition of each wax is the major first-order transition, its relative width should correlate with the relative width of the wax’s molecular weight distribution.1.1 The slack waxes typically used in equestrian surfaces comprise a blend of different waxes and oils containing a variety of hydrocarbons, chain lengths and structures.1.2 The blend of wax and oil determines the mechanical properties of the surface material as well as the response of the wax to temperature. The combination of lower and higher carbon weight materials, oil content and hydrocarbon structures also control how the wax will change over time.1.3 The differential scanning calorimetry (DSC) test is used to determine temperature transitions and melting range of wax samples. DSC can therefore demonstrate differences in heat flow rates between extracted wax samples. The wax samples are extracted from samples of the surface materials and used in a standard test based on Test Method D4419 (1).2 This procedure involves thermal cycling of samples between –30 and 94 °C using a known control.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F3418-20
标准名称:
Standard Test Method for Measurement of Transition Temperatures of Slack Waxes used in Equine Sports Surfaces by Differential Scanning Calorimetry (DSC)
英文名称:
Standard Test Method for Measurement of Transition Temperatures of Slack Waxes used in Equine Sports Surfaces by Differential Scanning Calorimetry (DSC)标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E3104-17(2023) Standard Specification for Strippable and Removable Coatings to Mitigate Spread of Radioactive Contamination
- ASTM E3107/E3107M-23 Standard Test Method for Resistance to Penetration and Backface Deformation for Ballistic-resistant Torso Body Armor and Shoot Packs
- ASTM E3111/E3111M-22 Standard Test Methods for Ballistic Resistant Head Protection
- ASTM E3115-17(2023) Standard Guide for Capturing Facial Images for Use with Facial Recognition Systems
- ASTM E3116-23 Standard Test Method for Viscosity Measurement Validation of Rotational Viscometers
- ASTM E3118/E3118M-22 Standard Test Methods to Evaluate Seismic Performance of Suspended Ceiling Systems by Full-Scale Dynamic Testing
- ASTM E3119-19 Standard Test Method for Accelerated Aging of Environmentally Controlled Dynamic Glazing
- ASTM E3120-19 Standard Specification for Evaluating Accelerated Aging Performance of Environmentally Controlled Dynamic Glazings
- ASTM E3121/E3121M-17 Standard Test Methods for Field Testing of Anchors in Concrete or Masonry
- ASTM E3130-21 Standard Guide for Developing Cost-Effective Community Resilience Strategies
- ASTM E3131-17 Standard Specification for Nucleic Acid-Based Systems for Bacterial Pathogen Screening of Suspicious Visible Powders
- ASTM E3132/E3132M-17 Standard Practice for Evaluating Response Robot Logistics: System Configuration
- ASTM E3134-20 Standard Specification for Transportation Tunnel Structural Components and Passive Fire Protection Systems
- ASTM E3137/E3137M-18 Standard Specification for Heat Meter Instrumentation
- ASTM E314-16 Standard Test Methods for Determination of Manganese in Iron Ores by Pyrophosphate Potentiometry and Periodate Spectrophotometry Techniques