
【国外标准】 Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The bent-beam specimen is designed for determining the stress-corrosion behavior of alloy sheets and plates in a variety of environments. The bent-beam specimens are designed for testing at stress levels below the elastic limit of the alloy. For testing in the plastic range, U-bend specimens should be employed (see Practice G30). Although it is possible to stress bent-beam specimens into the plastic range, the stress level cannot be calculated for plastically-stressed three- and four-point loaded specimens as well as the double-beam specimens. Therefore, the use of bent-beam specimens in the plastic range is not recommended for general use.1.1 This practice covers procedures for designing, preparing, and using bent-beam stress-corrosion specimens.1.2 Different specimen configurations are given for use with different product forms, such as sheet or plate. This practice is applicable to specimens of any metal that are stressed to levels less than the elastic limit of the material, and therefore, the applied stress can be accurately calculated or measured (see Note 1). Stress calculations by this practice are not applicable to plastically stressed specimens.NOTE 1: It is the nature of these practices that only the applied stress can be calculated. Since stress-corrosion cracking is a function of the total stress, for critical applications and proper interpretation of results, the residual stress (before applying external stress) or the total elastic stress (after applying external stress) should be determined by appropriate nondestructive methods, such as X-ray diffraction (1).21.3 Test procedures are given for stress-corrosion testing by exposure to gaseous and liquid environments.1.4 The bent-beam test is best suited for flat product forms, such as sheet, strip, and plate. For plate material the bent-beam specimen is more difficult to use because more rugged specimen holders must be built to accommodate the specimens. A double-beam modification of a four-point loaded specimen to utilize heavier materials is described in 10.5.1.5 The exposure of specimens in a corrosive environment is treated only briefly since other practices deal with this aspect, for example, Practices D1141, G30, G36, G44, G50, and G85. The experimenter is referred to ASTM Special Technical Publication 425 (2).1.6 The bent-beam practice generally constitutes a constant strain (deflection) test. Once cracking has initiated, the state of stress at the tip of the crack as well as in uncracked areas has changed, and therefore, the known or calculated stress or strain values discussed in this practice apply only to the state of stress existing before initiation of cracks.1.7 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (For more specific safety hazard information see Section 7 and 12.1.)1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM G39-99(2021)
标准名称:
Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens
英文名称:
Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3016/F3016M-19 Standard Test Method for Surrogate Testing of Vehicle Impact Protective Devices at Low Speeds
- ASTM F3019/F3019M-19 Standard Specification for Chromium Free Zinc-Flake Composite, with or without Integral Lubricant, Corrosion Protective Coatings for Fasteners
- ASTM F302-09(2021) Standard Practice for Field Sampling of Aerospace Fluids in Containers
- ASTM F3021-17 Standard Specification for Universal Design of Fitness Equipment for Inclusive Use by Persons with Functional Limitations and Impairments
- ASTM F3022-16e1 Standard Test Method for Evaluating the Universal Design of Fitness Equipment for Inclusive Use by Persons with Functional Limitations and Impairments
- ASTM F3023-18 Standard Test Methods for Evaluating Design and Performance Characteristics of Stationary Upright and Recumbent Exercise Bicycles and Upper and Total Body Ergometers
- ASTM F3026-14(2019) Standard Guide for Helicopter Inland Search and Rescue (SAR) Crew Chief
- ASTM F3027-18 Standard Guide for Training of Personnel Operating in Mountainous Terrain (Mountain Endorsement)
- ASTM F3033-16(2021) Standard Practice for Installation of a Single-Sized, Cured-In-Place Liner Utilizing an Inflatable Bladder for Resurfacing Manhole Walls of Various Shapes and Sizes
- ASTM F3034-21 Standard Specification for Billets made by Winding Molten Extruded Stress-Rated High Density Polyethylene (HDPE)
- ASTM F3035-22 Standard Practice for Production Acceptance in the Manufacture of a Fixed Wing Light Sport Aircraft
- ASTM F3036-21 Standard Guide for Testing Absorbable Stents
- ASTM F3038-21 Standard Test Method for Timed Evaluation of Forced-Entry-Resistant Systems
- ASTM F3043-15 Standard Specification for “Twist Off” Type Tension Control Structural Bolt/Nut/Washer Assemblies, Alloy Steel, Heat Treated, 200 ksi Minimum Tensile Strength
- ASTM F3045-21 Standard Test Method for Evaluation of the Type and Viscoelastic Stability of Water-in-oil Mixtures Formed from Crude Oil and Petroleum Products Mixed with Water