
【国外标准】 Standard Guide for Determining the Buoyancy to Weight Ratio of Oil Spill Containment Boom
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This guide describes a method of determining the buoyancy to weight ratio of spill response booms. The principle is based on Archimedes Law, which states that a body either wholly or partially immersed in a fluid will experience an upward force equal and opposite to the weight of the fluid displaced by it.4.2 Unless otherwise specified, when used in this guide, the term buoyancy to weight ratio (B/W ratio) refers to the gross buoyancy to weight ratio. Buoyancy is an indicator of a spill response boom’s ability to follow the water surface when exposed to current forces, fouling due to microbial growth (which adds weight), and wave conditions. Surface conditions other than quiescent will have an adverse effect on collection or containment performance. When waves are present, conformance to the surface is essential to prevent losses. Minimum buoyancy to weight ratios for oil spill containment booms are specified in Guide F1523 for various environmental conditions.4.3 This guide provides the methodology necessary to determine the buoyancy to weight ratio using a fluid displacement method. This method is typically applied to booms having relatively low B/W ratios (in the range of 2:1 to 10:1). Booms with greater buoyancies may also be tested in this manner. It is acceptable to use calculation methods to estimate boom displacement for booms with buoyancies greater than 10:1, where the potential error in doing so would have a less significant effect on performance.4.4 When evaluating the B/W ratio of a spill response boom, consideration must be given to the inherent properties of the boom that may affect the net B/W ratio while in use. These considerations include, but are not limited to, absorption of fluids into flotation materials, membranes that are abraded during normal use, and entry of water into components of the boom.The entry of water into boom components is of particular concern with booms that contain their flotation element within an additional membrane. (This is the case for many booms that use rolled-foam flotation and relatively lightweight material for the boom membrane.) It is also important for booms that have pockets that enclose cable or chain tension members or ballast. When new, the membrane enclosure may contain air that would result in increased buoyancy. In normal use, the membrane material may be easily abraded such that it would no longer contain air, and water would be allowed in at abrasion locations. For such booms, the membrane enclosure shall not be considered as part of the flotation of the boom, and the membrane shall be intentionally punctured to allow water to enter during the test procedure.1.1 This guide describes a practical method for determining the buoyancy to weight (B/W) ratio of oil spill containment booms.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2682-07(2018)
标准名称:
Standard Guide for Determining the Buoyancy to Weight Ratio of Oil Spill Containment Boom
英文名称:
Standard Guide for Determining the Buoyancy to Weight Ratio of Oil Spill Containment Boom标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E3168-20a Standard Practice for Determining Low-Contrast Visual Acuity of Radiographic Interpreters
- ASTM E317-21 Standard Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments
- ASTM E3170/E3170M-18(2023) Standard Practice for Phased Array Ultrasonic Testing of Polyethylene Electrofusion Joints
- ASTM E3171-21a Standard Test Method for Determination of Total Silver in Textiles by ICP-OES or ICP-MS Analysis
- ASTM E3178-18 Standard Practice for Evaluating Static and Cidal Chemical Decontaminants against Bacillus Spores using Centrifugal Filtration Tubes
- ASTM E3182-20 Standard Practice for Preparing an Occupant Exposure Screening Report (OESR) for Substances in Installed Building Products
- ASTM E3186-19 Standard Guide for Use and Testing of Dry-Block Temperature Calibrators
- ASTM E3191-18 Standard Specification for Permanent Foaming Fixatives Used to Mitigate Spread of Radioactive Contamination
- ASTM E3192/E3192M-20 Standard Practice for Soft Armor Conditioning by Tumbling
- ASTM E3197-23 Standard Terminology Relating to Examination of Fire Debris
- ASTM E3199-22a Standard Guide for Alternative Allocation Approaches to Modeling Input and Output Flows of Secondary Materials and Related Recycling Scenarios in Life Cycle Assessment
- ASTM E3200-21 Standard Guide for Investment Analysis in Environmentally Sustainable Manufacturing
- ASTM E3208-20 Standard Specification for Minimum Equipment Requirements for Mobile Surface Contaminant Classification and Measurement Equipment
- ASTM E3209/E3209M-20 Standard Test Method for Pavement Thickness by Magnetic Pulse Induction
- ASTM E321-20 Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Neodymium-148 Method)