
【国外标准】 Standard Guide for Deriving Acceptable Levels of Airborne Chemical Contaminants in Aircraft Cabins Based on Health and Comfort Considerations
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Although cabin air quality has been measured on numerous occasions and in many studies, there is very little guidance available for interpreting such data. Guidance for identifying contaminants and associated exposure levels that would cause concern in aircraft cabins is very limited. Federal Aviation Administration (FAA) Airworthiness Standards (14 CFR 25) provide regulatory guidance that explicitly applies to the aircraft cabin environment. The FAA standards, however, define acceptable exposure limits for a limited number of chemical contaminants (ozone, carbon dioxide, and carbon monoxide). Another limitation of the FAA standards is that these are design standards only and are not operational standards; thus, once an aircraft is put in service these standards are not strictly applicable.5.2 Measurements of aircraft cabin air quality often lead to a much larger list of volatile and semi-volatile organic chemicals of potential concern. Exposures to these chemicals, however, are largely unregulated outside of the industrial workplace.5.3 An important feature of the aircraft cabin environment is that both passengers (public) and flight attendants (worker population) occupy it simultaneously. Therefore, workplace exposure guidelines cannot simply be extended to address exposures in aircraft cabin environment. Also, the length of flights and work shifts can vary considerably for flight attendants.5.4 Contaminant levels of concern for the general public must account for the non-homogeneity of the population (for example, address sensitive individuals, the differences between passenger and crew activity levels, location, health status, personal microenvironment). Levels of concern associated with industrial workplace exposures typically consider a population of healthy adults exposed for 40 h per week (1).4 Consequently, exposure criteria developed to protect public health typically are more stringent than those for workers.5.4.1 Given that the aircraft cabin environment must meet the needs of passengers as well as crew, a more stringent concentration level based upon the general population would protect both.5.4.2 Aircraft cabin air quality must be addressed both during flight and on the ground because the conditions during flight are much different than when the aircraft is on the ground.1.1 This guide provides methodology to assist in interpreting results of air quality measurements conducted in aircraft cabins. In particular, the guide describes methodology for deriving acceptable concentrations for airborne chemical contaminants, based on health and comfort considerations.1.2 The procedures for deriving acceptable concentrations are based on considerations of comfort and health effects, including odor and irritant effects, of individual chemical contaminants being evaluated. The guide does not provide specific benchmark or guidance values for individual chemicals to compare with results of air quality measurements.1.3 Chemical contaminant exposures under both routine and episodic conditions for passengers and crew are considered.1.4 This guide does not address airborne microbiological contaminants, which are also important in consideration of aircraft cabin air quality. This guide also does not address methodologies for investigations of air quality complaints.1.5 This guide assumes that a list of chemical contaminants of potential concern has been developed based on existing concentration, emission, or material composition data.1.6 The primary information resources for developing acceptable concentrations are databases and documents maintained or published by cognizant authorities or organizations concerned with health effects of exposure to contaminants.1.7 Acceptable concentrations developed through this guide may be used as a basis for selecting test methods with adequate reliability and sensitivity to assess the acceptability of aircraft cabin environments.1.8 Procedures described in this guide should be carried out in consultation with qualified toxicologists and health effects specialists to ensure that acceptable concentrations developed are consistent with the current scientific understanding and knowledge base.1.9 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7034-18
标准名称:
Standard Guide for Deriving Acceptable Levels of Airborne Chemical Contaminants in Aircraft Cabins Based on Health and Comfort Considerations
英文名称:
Standard Guide for Deriving Acceptable Levels of Airborne Chemical Contaminants in Aircraft Cabins Based on Health and Comfort Considerations标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D7033-22 Standard Practice for Establishing Design Capacities for Oriented Strand Board (OSB) Wood-Based Structural-Use Panels
- 下一篇: ASTM D7035-21 Standard Test Method for Determination of Metals and Metalloids in Airborne Particulate Matter by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)
- 推荐标准
- ASTM E690-15(2020) Standard Practice for In Situ Electromagnetic (Eddy Current) Examination of Nonmagnetic Heat Exchanger Tubes
- ASTM E691-23 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- ASTM E693-23 Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA)
- ASTM E695-22 Standard Test Method of Measuring Relative Resistance of Wall, Floor, and Roof Construction to Impact Loading
- ASTM E696-23 Standard Specification for Tungsten-Rhenium Alloy Thermocouple Wire
- ASTM E697-96(2019) Standard Practice for Use of Electron-Capture Detectors in Gas Chromatography
- ASTM E699-16 Standard Specification for Agencies Involved in Testing, Quality Assurance, and Evaluating of Manufactured Building Components
- ASTM E701-80(2018) Standard Test Methods for Municipal Ferrous Scrap
- ASTM E708-79(2017) Standard Specification for Waste Glass as a Raw Material for the Manufacture of Glass Containers
- ASTM E709-21 Standard Guide for Magnetic Particle Testing
- ASTM E715-80(2022) Standard Specification for Gravity-Convection and Forced-Circulation Water Baths
- ASTM E716-16(2021)e2 Standard Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of Chemical Composition by Spark Atomic Emission Spectrometry
- ASTM E724-21 Standard Guide for Conducting Static Short-Term Chronic Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs
- ASTM E725-96(2021) Standard Test Method for Sampling Granular Carriers and Granular Pesticides
- ASTM E726-01(2021) Standard Test Method for Particle Size Distribution of Granular Carriers and Granular Pesticides