
【国外标准】 Standard Practice for Rubber IRM 901, IRM 902, and IRM 903 Replacement Oils for ASTM No. 1, ASTM No. 2, ASTM No. 3 Oils, and IRM 905 formerly ASTM No. 5 Oil
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
3.1 The reference immersion oils described in this practice are required for the development of oil-resistant rubber compounds for use in environments where contact with petroleum-based solvents and oils is encountered. Tests for tensile strength, percent elongation at break, hardness, and percent volume swell are performed after a specified immersion time period (at a specified temperature) in the evaluation of oil-resistant rubbers. The results of such testing by rubber product manufacturers and their customers are used to develop oil-resistant rubbers or compounds, or both.3.2 Testing with ASTM Oils No. 1, No. 2, and No. 3 is used to verify compliance with purchase specifications which reference the oil-resistant classes of rubbers and elastomers listed in Table 6 of Classification D2000. These oils are also used in comparative performance evaluation testing of O-rings and O-ring compounds as cited in Test Methods D1414. The use of these reference oils is required for the development and selection of oil-resistant rubber compounds having acceptable or optimum performance characteristics, or both.1.1 This practice covers three immersion oils to be used as replacements for ASTM No. 1, No. 2, and No. 3 immersion oils as called for in Test Method D471. The immersion oils will be designated as IRM 901 as a replacement for ASTM No. 1 oil, IRM 902 as a replacement for ASTM No. 2 oil, and IRM 903 as a replacement for ASTM No. 3 oil. The new reference oils have been developed under a new Committee D11 policy on reference materials (see Practice D4678 for background on the new policy and procedures).1.2 The oils, IRM 901, IRM 902, and IRM 903, are similar but not fully equivalent to ASTM No.1, ASTM No. 2, and ASTM No. 3 oil, respectively. Refer to Table 1 for a description of the typical properties and specifications for these oils.1.3 ASTM No. 5 Oil was accepted into Specification D5900 as an industry reference material in 2010 and designated as IRM 905. The composition, and properties of this immersion oil were not changed and the data in Table 1 remains current. It was listed among the IRM immersion oils in Test Method D471 in 2010.1.4 This practice gives the necessary background and details on the changeover from the previous oils to the new oils. See Annex A1 for additional information on the commercial oils selected to replace ASTM No. 2 and No. 3 oil and the test program conducted for this selection process. The changeover from ASTM to IRM oils is proposed in two steps:1.4.1 Step 1—A transition phase that makes use of the Equivalent Volume Swell (EVS) for each of the two replacement oils. EVS(902) is the ASTM No. 2 percent volume swell value calculated from the measured percent volume swell value using IRM 902 as the immersion liquid. A similar calculation can be used to calculate the analogous EVS(903) and EVS(903) values. The EVS value is obtained as a correction of the measured IRM 901, 902, or 903 percent volume swell value. The EVS values may be used to determine if volume swell specifications are met when the specifications are expressed in terms of ASTM No. 1, No. 2, or No. 3 limits, and1.4.2 Step 2—A longer term policy change or conversion of specifications from ASTM No. 1, No. 2, and No. 3 values to IRM 901, 902, and 903 values.1.5 The EVS values are calculated on the basis of “correction equations” derived from one of two sources.1.5.1 Correction equations derived from the results of the comprehensive evaluation program conducted to select each of the two replacement oils from a group of three candidate oils for ASTM No. 2 and No. 3 oils. This program is described in Annex A1.1.5.2 Correction equations derived from in-house customized or specific testing programs to make direct comparisons of the volume swell (and other important properties) of the IRM and ASTM oils. These programs should be conducted in each laboratory of those organizations that engage in producer-user specification testing for rubber immersion performance.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D5964-16(2021)
标准名称:
Standard Practice for Rubber IRM 901, IRM 902, and IRM 903 Replacement Oils for ASTM No. 1, ASTM No. 2, ASTM No. 3 Oils, and IRM 905 formerly ASTM No. 5 Oil
英文名称:
Standard Practice for Rubber IRM 901, IRM 902, and IRM 903 Replacement Oils for ASTM No. 1, ASTM No. 2, ASTM No. 3 Oils, and IRM 905 formerly ASTM No. 5 Oil标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E747-18 Standard Practice for Design, Manufacture and Material Grouping Classification of Wire Image Quality Indicators (IQI) Used for Radiology
- ASTM E749/E749M-17(2021) Standard Practice for Acoustic Emission Monitoring During Continuous Welding
- ASTM E751/E751M-17(2022) Standard Practice for Acoustic Emission Monitoring During Resistance Spot-Welding
- ASTM E756-05(2023) Standard Test Method for Measuring Vibration-Damping Properties of Materials
- ASTM E759/E759M-92(2023) Standard Test Method for Effect of Deflection on Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E760/E760M-92(2023) Standard Test Method for Effect of Impact on Bonding of Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E761/E761M-92(2023) Standard Test Method for Compressive Strength of Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E768-99(2018) Standard Guide for Preparing and Evaluating Specimens for Automatic Inclusion Assessment of Steel
- ASTM E776-23 Standard Test Method for Determination of Forms of Chlorine in Refuse-Derived Fuel
- ASTM E778-15(2021) Standard Test Methods for Nitrogen in Refuse-Derived Fuel Analysis Samples
- ASTM E779-19 Standard Test Method for Determining Air Leakage Rate by Fan Pressurization
- ASTM E780-17(2021) Standard Test Method for Measuring the Insulation Resistance of Mineral-Insulated, Metal-Sheathed Thermocouples and Mineral-Insulated, Metal-Sheathed Cable at Room Temperature
- ASTM E781-86(2023) Standard Practice for Evaluating Absorptive Solar Receiver Materials When Exposed to Conditions Simulating Stagnation in Solar Collectors with Cover Plates
- ASTM E782-95(2022) Standard Practice for Exposure of Cover Materials for Solar Collectors to Natural Weathering Under Conditions Simulating Operational Mode
- ASTM E784-89(2022) Standard Specification for Clamps, Utility, Laboratory, and Holders, Buret and Clamp