
【国外标准】 Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels and Related Alloys
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method provides a prediction of the resistance to stable propagating pitting corrosion of stainless steels and related alloys in a standard medium (see Note 1). The CPT test can be used for product acceptance, alloy development studies, and manufacturing control. In the case of product acceptance, the supplier and user must agree upon the preconditioning of the specimen with regard to surface finish. The test is not intended for design purposes since the test conditions accelerate corrosion in a manner that does not simulate any actual service environment.5.2 Another method to determine the potential independent CPT with an electrochemical technique has been discussed in the literature (1-4). This test method involves a potentiodynamic (potential sweep) procedure performed on specimens at different temperatures. A comparison (2) of the test method described in this test method and the potentiodynamic technique has indicated no difference in the test result obtained.1.1 This test method covers a procedure for the evaluation of the resistance of stainless steel and related alloys to pitting corrosion based on the concept of the determination of a potential independent critical pitting temperature (CPT).1.2 This test method applies to wrought and cast products including but not restricted to plate, sheet, tubing, bar, forgings, and welds, (see Note 1).NOTE 1: Examples of CPT measurements on sheet, plate, tubing, and welded specimens for various stainless steels can be found in Ref (1).2 See the research reports (Section 14).1.3 The standard parameters recommended in this test method are suitable for characterizing the CPT of austenitic stainless steels and other related alloys with a corrosion resistance ranging from that corresponding to solution annealed UNS S31600 (Type 316 stainless steel) to solution annealed UNS S31254 (6 % Mo stainless steel).1.4 This test method may be extended to stainless steels and other alloys related to stainless steel that have a CPT outside the measurement range given by the standard parameters described in this test method. Appropriate test potential and solution must then be determined.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM G150-18
标准名称:
Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels and Related Alloys
英文名称:
Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels and Related Alloys标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM G146-01(2018) Standard Practice for Evaluation of Disbonding of Bimetallic Stainless Alloy/Steel Plate for Use in High-Pressure, High-Temperature Refinery Hydrogen Service
- 下一篇: ASTM G157-98(2018) Standard Guide for Evaluating Corrosion Properties of Wrought Iron- and Nickel-Based Corrosion Resistant Alloys for Chemical Process Industries
- 推荐标准
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
- ASTM A102-04(2019) Standard Specification for Ferrovanadium
- ASTM A1021/A1021M-20 Standard Specification for Martensitic Stainless Steel Forgings and Forging Stock for High-Temperature Service