
【国外标准】 Standard Test Method for Autoignition Temperature of Chemicals
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Autoignition, by its very nature, is dependent on the chemical and physical properties of the material and the method and apparatus employed for its determination. The autoignition temperature by a given method does not necessarily represent the minimum temperature at which a given material will self-ignite in air. The volume of the vessel used is particularly important since lower autoignition temperatures will be achieved in larger vessels. (See Appendix X2.) Vessel material can also be an important factor.5.2 The temperatures determined by this test method are those at which air oxidation leads to ignition. These temperatures can be expected to vary with the test pressure and oxygen concentration.5.3 This test method is not designed for evaluating materials which are capable of exothermic decomposition. For such materials, ignition is dependent upon the thermal and kinetic properties of the decomposition, the mass of the sample, and the heat transfer characteristics of the system.5.4 This test method can be employed for solid chemicals which melt and vaporize or which readily sublime at the test temperature. No condensed phase, liquid or solid, should be present when ignition occurs.5.5 This test method is not designed to measure the autoignition temperature of materials which are solids or liquids at the test temperature (for example, wood, paper, cotton, plastics, and high-boiling point chemicals). Such materials will thermally degrade in the flask and the accumulated degradation products may ignite.5.6 This test method can be used, with appropriate modifications, for chemicals that are gaseous at atmospheric temperature and pressure.5.7 This test method was developed primarily for liquid chemicals but has been employed to test readily vaporized solids. Responsibility for extension of this test method to solids of unknown thermal stability, boiling point, or degradation characteristics rests with the operator.1.1 This test method covers the determination of hot- and cool-flame autoignition temperatures of a liquid chemical in air at atmospheric pressure in a uniformly heated vessel.NOTE 1: Within certain limitations, this test method can also be used to determine the autoignition temperature of solid chemicals which readily melt and vaporize at temperatures below the test temperature and for chemicals that are gaseous at atmospheric pressure and temperature.NOTE 2: After a round robin study, Test Method D2155 was discontinued, and replaced by Test Method E659 in 1978. See also Appendix X2.1.2 This standard should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E659-15(2023)
标准名称:
Standard Test Method for Autoignition Temperature of Chemicals
英文名称:
Standard Test Method for Autoignition Temperature of Chemicals标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM E651/E651M-22 Standard Practice for Evaluating Capabilities of Agencies Involved in System Analysis and Compliance Assurance for Manufactured Building
- 下一篇: ASTM E660-90(2021) Standard Practice for Accelerated Polishing of Aggregates or Pavement Surfaces Using a Small-Wheel, Circular Track Polishing Machine (Withdrawn 2022)
- 推荐标准
- ASTM E3104-17(2023) Standard Specification for Strippable and Removable Coatings to Mitigate Spread of Radioactive Contamination
- ASTM E3107/E3107M-23 Standard Test Method for Resistance to Penetration and Backface Deformation for Ballistic-resistant Torso Body Armor and Shoot Packs
- ASTM E3111/E3111M-22 Standard Test Methods for Ballistic Resistant Head Protection
- ASTM E3115-17(2023) Standard Guide for Capturing Facial Images for Use with Facial Recognition Systems
- ASTM E3116-23 Standard Test Method for Viscosity Measurement Validation of Rotational Viscometers
- ASTM E3118/E3118M-22 Standard Test Methods to Evaluate Seismic Performance of Suspended Ceiling Systems by Full-Scale Dynamic Testing
- ASTM E3119-19 Standard Test Method for Accelerated Aging of Environmentally Controlled Dynamic Glazing
- ASTM E3120-19 Standard Specification for Evaluating Accelerated Aging Performance of Environmentally Controlled Dynamic Glazings
- ASTM E3121/E3121M-17 Standard Test Methods for Field Testing of Anchors in Concrete or Masonry
- ASTM E3130-21 Standard Guide for Developing Cost-Effective Community Resilience Strategies
- ASTM E3131-17 Standard Specification for Nucleic Acid-Based Systems for Bacterial Pathogen Screening of Suspicious Visible Powders
- ASTM E3132/E3132M-17 Standard Practice for Evaluating Response Robot Logistics: System Configuration
- ASTM E3134-20 Standard Specification for Transportation Tunnel Structural Components and Passive Fire Protection Systems
- ASTM E3137/E3137M-18 Standard Specification for Heat Meter Instrumentation
- ASTM E314-16 Standard Test Methods for Determination of Manganese in Iron Ores by Pyrophosphate Potentiometry and Periodate Spectrophotometry Techniques