
【国外标准】 Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 TSCs are susceptible to the formation of porosity due to a lack of fusion between sprayed particles or the expansion of gases generated during the spraying process. The determination of area percent porosity is important in order to monitor the effect of variable spray parameters and the suitability of a coating for its intended purpose. Depending on application, some or none of this porosity may be tolerable.4.2 These test methods cover the determination of the area percentage porosity of TSCs. Method A is a manual, direct comparison method utilizing the seven standard images in Figs. 1-7 which depict typical distributions of porosity in TSCs. Method B is an automated technique requiring the use of a computerized image analyzer.FIG. 1 — 0.5 % PorosityFIG. 2 — 1.0 % PorosityFIG. 3 — 2.0 % PorosityFIG. 4 — 5.0 % PorosityFIG. 5 — 8.0 % PorosityFIG. 6 — 10.0 % PorosityFIG. 7 — 15.0 % Porosity4.3 These methods quantify area percent porosity only on the basis of light reflectivity from a metallographically polished cross section. See Guide E1920 for recommended metallographic preparation procedures.4.4 The person using these test methods must be familiar with the visual features of TSCs and be able to determine differences between inherent porosity and oxides. The individual must be aware of the possible types of artifacts that may be created during sectioning and specimen preparation, for example, pullouts and smearing, so that results are reported only on properly prepared specimens. Examples of properly prepared specimens are shown in Figs. 8-10. If there are doubts as to the integrity of the specimen preparation it is suggested that other means be used to confirm microstructural features. This may include energy dispersive spectroscopy (EDS), wavelength dispersive spectroscopy (WDS) or cryogenic fracture of the coating followed by analysis of the fractured surfaces with a scanning electron microscope (SEM).FIG. 8 Ni/Al TSC—500XNOTE 1: V = void, O = oxide, L = linear detachmentFIG. 9 Monel TSC—200XNOTE 1: V = void, G = embedded grit, L = linear detachmentFIG. 10 Alloy 625 TSC—200XNOTE 1: V = void, O = oxide, G = embedded grit1.1 These test methods cover procedures to perform porosity ratings on metallographic specimens of thermal sprayed coatings (TSCs) prepared in accordance with Guide E1920 by direct comparison to standard images and via the use of automatic image analysis equipment.1.2 These test methods deal only with recommended measuring methods and nothing in them should be construed as defining or establishing limits of acceptability for any measured value of porosity.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2109-01(2021)
标准名称:
Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings
英文名称:
Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E866-23 Standard Specification for Corrosion-Inhibiting Adhesive Primer for Aluminum Alloys to Be Adhesively Bonded in Honeycomb Shelter Panels
- ASTM E867-23 Standard Terminology Relating to Vehicle-Pavement Systems
- ASTM E870-82(2019) Standard Test Methods for Analysis of Wood Fuels
- ASTM E871-82(2019) Standard Test Method for Moisture Analysis of Particulate Wood Fuels
- ASTM E872-82(2019) Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels
- ASTM E874-19 Standard Practice for Adhesive Bonding of Aluminum Facings to Nonmetallic Honeycomb Core for Shelter Panels
- ASTM E875-20 Standard Practice for Evaluation of Fungal Control Agents as Preservatives for Aqueous-Based Products Used in the Paper Industry
- ASTM E877-21 Standard Practice for Sampling and Sample Preparation of Iron Ores and Related Materials for Determination of Chemical Composition and Physical Properties
- ASTM E878-20 Standard Test Method for Determination of Titanium in Iron Ores and Related Materials by Diantipyrylmethane Ultraviolet Spectrophotometry
- ASTM E879-20 Standard Specification for Thermistor Sensors for General Purpose and Laboratory Temperature Measurements
- ASTM E88-11(2017) Standard Practice for Sampling Nonferrous Metals and Alloys in Cast Form for Determination of Chemical Composition
- ASTM E882-10(2016)e1 Standard Guide for Accountability and Quality Control in the Chemical Analysis Laboratory
- ASTM E887-21 Standard Test Method for Silica in Refuse-Derived Fuel (RDF) and RDF Ash
- ASTM E889-82(2023) Standard Test Method for Composition or Purity of a Solid Waste Materials Stream
- ASTM E90-23 Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements