
【国外标准】 Standard Practice for Use of an Electrically Conductive Geotextile for Leak Location Surveys
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 With the increased use of geomembranes as a barrier material to restrict liquid migration from one location to another, a need has been created for standardized tests by which the continuity of the installed geomembrane, including the seams, can be evaluated. This practice is intended to meet such a need whenever the subgrade soil is nonconductive, or a geomembrane is installed on a nonconductive material.5.2 The use of a suitably conductive geotextile installed between a nonconductive soil or material and the geomembrane will permit electrical leak location survey to be conducted.5.3 The compatibility of a conductive geotextile and leak location equipment shall be assessed for each leak location technique considered (covered or exposed, when applicable). A realistic small-scale test shall have been conducted by the supplier of geotextile and/or leak detection equipment to demonstrate their mutual compatibility for a given leak detection technique.1.1 This standard practice describes standard procedures for using a conductive geotextile with electrical methods to locate leaks in exposed geomembranes and geomembranes covered with water or earth materials containing moisture.1.2 This standard practice provides guidance for the use of appropriate conductive geotextile used in leak location surveys on geomembranes. This guide includes all types of conductive geotextiles with sufficient conductivity for the particular electrical leak location method. A conductive geotextile is applicable to all types of geoelectric surveys when there is otherwise not a conductive layer under the geomembrane.1.3 This standard practice is intended to ensure that leak location surveys can always be performed with a reasonable level of certainty. This standard practice provides guidance for the use of appropriate conductive geotextiles used in leak location surveys on geomembranes.1.4 Leak location surveys can be used on nonconductive geomembranes installed in basins, ponds, tanks, ore and waste pads, landfill cells, landfill caps, other containment facilities, and building applications such as in parking garages, decks, and green roofs. The procedures are applicable for geomembranes made of nonconductive materials such as polyethylene, polypropylene, polyvinyl chloride, chlorosulfonated polyethylene, bituminous material, and other electrically insulating materials. Leak location surveys involving conductive or partially conductive geomembranes are not within the scope of this document.1.5 Warning—The electrical methods used for geomembrane leak location could use high voltages, resulting in the potential for electrical shock or electrocution. This hazard might be increased because operations might be conducted in or near water. In particular, a high voltage could exist between the water or earth material and earth ground, or any grounded conductor. These procedures are potentially VERY DANGEROUS, and can result in personal injury or death. Because of the high voltage that could be involved, and the shock or electrocution hazard, do not come in electrical contact with any leak unless the excitation power supply is turned off. The electrical methods used for geomembrane leak location should be attempted only by qualified and experienced personnel. Appropriate safety measures must be taken to protect the leak location operators as well as other people at the site.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7852-23
标准名称:
Standard Practice for Use of an Electrically Conductive Geotextile for Leak Location Surveys
英文名称:
Standard Practice for Use of an Electrically Conductive Geotextile for Leak Location Surveys标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS 1038.23-2002 (R2013) Coal and coke - Analysis and testing Higher rank coal and coke - Carbonate carbon
- AS 1774.23.1-1992 Refractories and refractory materials - Physical test methods Abradability index - Oblique method
- AS 1807.23-1989 Cleanrooms, workstations and safety cabinets - Methods of test Determination of intensity of radiation from germicidal ultraviolet lamps
- ASTM D3771-15(2022) Standard Specification for Rubber Seals Used in Concentrating Solar Collectors
- ASTM D3772-15(2021) Standard Specification for Industrial Rubber Finger Cots
- ASTM D3774-18 Standard Test Method for Width of Textile Fabric
- ASTM D3775-17(2023) Standard Test Method for End (Warp) and Pick (Filling) Count of Woven Fabrics
- ASTM D378-10(2016) Standard Test Methods for Rubber (Elastomeric) Conveyor Belting, Flat Type
- ASTM D3780-22 Standard Performance Specification for Men's and Boys' Woven Dress Suit Fabrics and Woven Sportswear Jacket, Slack, and Trouser Fabrics
- ASTM D3785-20 Standard Performance Specification for Woven Necktie and Scarf Fabrics
- ASTM D3786/D3786M-18(2023) Standard Test Method for Bursting Strength of Textile Fabrics—Diaphragm Bursting Strength Tester Method
- ASTM D3787-16(2020) Standard Test Method for Bursting Strength of Textiles—Constant-Rate-of-Traverse (CRT) Ball Burst Test
- ASTM D3791/D3791M-11(2018) Standard Practice for Evaluating the Effects of Heat on Asphalts
- ASTM D3802-23 Standard Test Method for Ball-Pan Hardness of Activated Carbon
- ASTM D3805/D3805M-16(2023) Standard Guide for Application of Aluminum-Pigmented Asphalt Roof Coatings