
【国外标准】 Standard Practice for Gravimetric Measurement of Polymeric Components for Wear Assessment
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
3.1 This practice uses a weight-loss method of wear determination for the polymeric components or materials used in human joint prostheses, using serum or demonstrated equivalent fluid for lubrication, and running under a load profile representative of the appropriate human joint application (1,2) .4 The basis for this weight-loss method for wear measurement was originally developed (3) for pin-on-disk wear studies (Practice F732) and has been extended to total hip replacements (4, 5, ISO 14242–2, and Guide F1714), and to femoro-tibial knee prostheses (6 and ISO 14243–2), and to femoro-patellar knee prostheses (6,7).3.2 While wear results in a change in the physical dimensions of the specimen, it is distinct from dimensional changes due to creep or plastic deformation, in that wear results in the removal of material in the form of polymeric debris particles, causing a loss in weight of the specimen.3.3 This practice for measuring wear of the polymeric component is suitable for various simulator devices. These techniques can be used with metal, ceramic, carbon, polymeric, and composite counter faces bearing against a polymeric material (for example, polyethylene, polyacetal, and so forth). Thus, this weight-loss method has universal application for wear studies of human joint replacements which feature polymeric bearings. This weight-loss method has not been validated for non-polymeric material bearing systems, such as metal-metal, carbon-carbon, or ceramic-ceramic. Progressive wear of such rigid bearing combinations has generally been monitored using linear, variable-displacement transducers, or by other profilometric techniques.1.1 This practice describes a laboratory method using a weight-loss (that is, mass-loss; see X1.4) technique for evaluating the wear properties of polymeric materials or devices which are being considered for use as bearing surfaces of human joint replacement prostheses. The test specimens are evaluated in a device intended to simulate the tribological conditions encountered in the human joint; for example, use of a fluid such as bovine serum, or equivalent pseudosynovial fluid shown to simulate similar wear mechanisms and debris generation found in vivo.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2025-06(2018)
标准名称:
Standard Practice for Gravimetric Measurement of Polymeric Components for Wear Assessment
英文名称:
Standard Practice for Gravimetric Measurement of Polymeric Components for Wear Assessment标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3016/F3016M-19 Standard Test Method for Surrogate Testing of Vehicle Impact Protective Devices at Low Speeds
- ASTM F3019/F3019M-19 Standard Specification for Chromium Free Zinc-Flake Composite, with or without Integral Lubricant, Corrosion Protective Coatings for Fasteners
- ASTM F302-09(2021) Standard Practice for Field Sampling of Aerospace Fluids in Containers
- ASTM F3021-17 Standard Specification for Universal Design of Fitness Equipment for Inclusive Use by Persons with Functional Limitations and Impairments
- ASTM F3022-16e1 Standard Test Method for Evaluating the Universal Design of Fitness Equipment for Inclusive Use by Persons with Functional Limitations and Impairments
- ASTM F3023-18 Standard Test Methods for Evaluating Design and Performance Characteristics of Stationary Upright and Recumbent Exercise Bicycles and Upper and Total Body Ergometers
- ASTM F3026-14(2019) Standard Guide for Helicopter Inland Search and Rescue (SAR) Crew Chief
- ASTM F3027-18 Standard Guide for Training of Personnel Operating in Mountainous Terrain (Mountain Endorsement)
- ASTM F3033-16(2021) Standard Practice for Installation of a Single-Sized, Cured-In-Place Liner Utilizing an Inflatable Bladder for Resurfacing Manhole Walls of Various Shapes and Sizes
- ASTM F3034-21 Standard Specification for Billets made by Winding Molten Extruded Stress-Rated High Density Polyethylene (HDPE)
- ASTM F3035-22 Standard Practice for Production Acceptance in the Manufacture of a Fixed Wing Light Sport Aircraft
- ASTM F3036-21 Standard Guide for Testing Absorbable Stents
- ASTM F3038-21 Standard Test Method for Timed Evaluation of Forced-Entry-Resistant Systems
- ASTM F3043-15 Standard Specification for “Twist Off” Type Tension Control Structural Bolt/Nut/Washer Assemblies, Alloy Steel, Heat Treated, 200 ksi Minimum Tensile Strength
- ASTM F3045-21 Standard Test Method for Evaluation of the Type and Viscoelastic Stability of Water-in-oil Mixtures Formed from Crude Oil and Petroleum Products Mixed with Water