
【国外标准】 Test Method for Atom Percent Fission in Uranium Fuel (Radiochemical Method) (Withdrawn 2001)
本网站 发布时间:
2024-02-28
- ASTM E219-80(1995)
- Withdrawn, No replacement
- 定价: 0元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
1.1 This test method covers the determination of U atom percent fission that has occurred in U fuel from analysis of the 137 Cs to U ratio after irradiation. 1.2 The test method is applicable to high-density, clad U fuel (metal, alloy, ceramic compound) in which no separation of Cs and U has occurred. 1.3 The test method is best applied to fuels that have aged several months since irradiation. In such material, the 13-day 136 Cs activity is reduced to a small amount through decay (3). 1.4 The test method should be restricted to low-exposure samples in which the activity of 134 Cs is less than that of 137 Cs. Cesium-134 is produced by neutron capture on fission product 133 Cs and grows at a rate proportional to the square of the exposure. This capture process limits the test method to samples exposed to less than 0.6 X 10 nvt. This exposure corresponds to burnups of 12 gigawatt days per metric ton of uranium (GWD/MTU) in Yankee Core I, and 5 GWD/ MTU in Dresden Core I. Samples with higher exposures may require the use of a lithium-drifted germanium detector to obtain adequate resolution between 134 Cs and 137 Cs. The use of such a detector will extend the range of this test method by a factor of about 2. Mass spectrometric isotope dilution analysis of 137 Cs with 133 Cs as the isotopic diluent would also overcome 134 Cs interference. 1.5 The test method is best applied to fuels where overheating has not caused center melting or grain growth, since high temperatures cause 137 Cs to distill from the fuel and deposit on cooler regions, such as the cladding. Therefore, cladding should be leached in the dissolver solution or dissolved with the uranium to maintain the true ratio of fission product 137 Cs to U. Alternatively, burnup in a maximum flux region of a fuel element can be obtained from analyzing a low-flux region of the element. The burnup measured in this position can be related to the burnup in the peak-flux position by a gamma scan of the element. A gamma scan usually represents the distribution of zirconium-95 and is a reflection of the fission distribution integrated over only the most recent months. This is not always a serious disadvantage, since such studies may be made after short irradiations. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM E219-80(1995)
标准名称:
Test Method for Atom Percent Fission in Uranium Fuel (Radiochemical Method) (Withdrawn 2001)
英文名称:
Test Method for Atom Percent Fission in Uranium Fuel (Radiochemical Method) (Withdrawn 2001)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F2044-09(2019)e1 Standard Specification for Liquid Level Indicating Equipment, Electrical
- ASTM F2046-00(2022) Standard Specification for Tachometers, Various
- ASTM F2049-11(2017) Standard Safety Performance Specification for Fences/Barriers for Public, Commercial, and Multi-Family Residential Use Outdoor Play Areas
- ASTM F2050-19 Standard Consumer Safety Specification for Hand-Held Infant Carriers
- ASTM F2051-00(2022) Standard Specification for Implantable Saline-Filled Breast Prostheses
- ASTM F2054/F2054M-13(2020) Standard Test Method for Burst Testing of Flexible Package Seals Using Internal Air Pressurization Within Restraining Plates
- ASTM F2055-17(2021) Standard Test Method for Size and Squareness of Resilient Floor Tile by Dial Gauge Method
- ASTM F2059-21 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask
- ASTM F2061-17 Standard Practice for Chemical Protective Clothing: Wearing, Care, and Maintenance Instructions
- ASTM F2062-00(2018) Standard Specification for Square Drive Interconnections on Surgical Instruments
- ASTM F2064-17 Standard Guide for Characterization and Testing of Alginates as Starting Materials Intended for Use in Biomedical and Tissue Engineered Medical Product Applications
- ASTM F2075-20 Standard Specification for Engineered Wood Fiber for Use as a Playground Safety Surface Under and Around Playground Equipment
- ASTM F2076-01(2022) Standard Practice for Communicating an EMS Patient Report to Receiving Medical Facilities
- ASTM F2080-23 Standard Specification for Cold-Expansion Fittings with Metal Compression-Sleeves for Crosslinked Polyethylene (PEX) Pipe and SDR9 Polyethylene of Raised Temperature (PE-RT) Pipe
- ASTM F2082/F2082M-23 Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery