
【国外标准】 Standard Test Method for Shear Fatigue of Sandwich Core Materials
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Often the most critical stress to which a sandwich panel core is subjected is shear. The effect of repeated shear stresses on the core material can be very important, particularly in terms of durability under various environmental conditions.5.2 This test method provides a standard method of obtaining the sandwich core shear fatigue response. Uses include screening candidate core materials for a specific application, developing a design-specific core shear cyclic stress limit, and core material research and development.NOTE 3: This test method may be used as a guide to conduct spectrum loading. This information can be useful in the understanding of fatigue behavior of core under spectrum loading conditions, but is not covered in this standard.5.3 Factors that influence core fatigue response and shall therefore be reported include the following: core material, core geometry (density, cell size, orientation, etc.), specimen geometry and associated measurement accuracy, specimen preparation, specimen conditioning, environment of testing, specimen alignment, loading procedure, loading frequency, force (stress) ratio and speed of testing (for residual strength tests).NOTE 4: If a sandwich panel is tested using the guidance of this standard, the following may also influence the fatigue response and should be reported: facing material, adhesive material, methods of material fabrication, adhesive thickness and adhesive void content. Further, core-to-facing strength may be different between precured/bonded and co-cured facings in sandwich panels with the same core and facing materials.1.1 This test method determines the effect of repeated shear forces on core material used in sandwich panels. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).1.2 This test method is limited to test specimens subjected to constant amplitude uniaxial loading, where the machine is controlled so that the test specimen is subjected to repetitive constant amplitude force (stress) cycles. Either shear stress or applied force may be used as a constant amplitude fatigue variable.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Within the text, the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM C394/C394M-16
标准名称:
Standard Test Method for Shear Fatigue of Sandwich Core Materials
英文名称:
Standard Test Method for Shear Fatigue of Sandwich Core Materials标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS 1038.16-1996 Coal and coke - Analysis and testing Assessment and reporting of results
- AS 1085.16-1995 Railway permanent way material Cast sleeper plates
- AS 1141.16-1995 Methods for sampling and testing aggregates Angularity number
- AS 1180 (Pt 9A to 9C)-1973 Methods of test for hose made from elastomeric materials - Third Group Methods 9A, 9B, 9C
- AS 1301.P201m-1986 Methods of test for pulp and paper (metric units) Kappa number of pulp
- AS 1301.P414m-1986 Methods of test for pulp and paper (metric units) Conditioning of paper for testing
- AS 1678.3C1-1987 Emergency procedure guide - Transport Group text EPGs for Class 3 substances - Flammable liquids - Flammable liquid of lesser hazard
- AS 1684.3 C1 Supp 1-2006 Residential timber-framed construction Cyclonic areas - C1 Supplement 1: Timber framing span tables - Wind classification C1 - Seasoned softwood - Stress Grade F5 (Supplement to AS 1684.3-2006)
- AS 1684.3 C1 Supp 10-1999 Residential timber-framed construction Cyclonic areas - C1 Supplement 10: Timber framing span tables - Wind classification C1 - Unseasoned softwood - Stress Grade F5 (Supplement to AS 1684.3-1999)
- AS 1684.3 C1 Supp 11-1999 Residential timber-framed construction Cyclonic areas - C1 Supplement 11: Timber framing span tables - Wind classification C1 - Unseasoned softwood - Stress Grade F7 (Supplement to AS 1684.3-1999)
- AS 1684.3 C1 Supp 12-2010 Residential timber-framed construction Cyclonic areas - C1 Supplement 12: Timber framing span tables - Wind classification C1 - Unseasoned hardwood - Stress Grade F8 (Supplement to AS 1684.3-2010)
- AS 1684.3 C1 Supp 13-2006 Residential timber-framed construction Cyclonic areas - C1 Supplement 13: Timber framing span tables - Wind classification C1 - Unseasoned hardwood - Stress Grade F11 (Supplement to AS 1684.3-2006)
- AS 1684.3 C1 Supp 14-2006 Residential timber-framed construction Cyclonic areas - C1 Supplement 14: Timber framing span tables - Wind classification C1 - Unseasoned hardwood - Stress Grade F14 (Supplement to AS 1684.3-2006)
- AS 1684.3 C1 Supp 15-1999 Residential timber-framed construction Cyclonic areas - C1 Supplement 15: Timber framing span tables - Wind classification C1 - Unseasoned hardwood - Stress Grade F17 (Supplement to AS 1684.3-1999)
- AS 1684.3 C1 Supp 15-2006 Residential timber-framed construction Cyclonic areas - C1 Supplement 15: Timber framing span tables - Wind classification C1 - Unseasoned hardwood - Stress Grade F17 (Supplement to AS 1684.3-2006)