
【国外标准】 Standard Practice for Estimating Concrete Strength by the Maturity Method
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This practice can be used to estimate the in-place strength of concrete to allow the start of critical construction activities such as: (1) removal of formwork and reshoring; (2) post-tensioning of tendons; (3) termination of cold weather protection; and (4) opening of roadways to traffic.5.2 This practice can be used to estimate strength of laboratory specimens cured under non-standard temperature conditions.5.3 The major limitations of the maturity method are: (1) the concrete must be maintained in a condition that permits cement hydration; (2) the method does not take into account the effects of early-age concrete temperature on the long-term strength (see Note 6) (3, 4); and (3) the method needs to be supplemented by other indications of the potential strength of the field concrete.5.4 The accuracy of the estimated strength depends, in part, on using the appropriate parameters (datum temperature or value of Q) for the maturity functions described in Section 6.NOTE 1: Approximate values of the datum temperature, To, and the Q-value for use in Eq 1 or Eq 2, respectively, are given in Appendix X2. If maximum accuracy of strength estimation is desired, the appropriate values of To or Q for a specific concrete mixture may be determined using the procedures given in Appendix X1.1.1 This practice provides a procedure for estimating concrete strength by means of the maturity method. The maturity index is expressed either in terms of the temperature-time factor or in terms of the equivalent age at a specified temperature.1.2 This practice requires establishing the strength-maturity relationship of the concrete mixture in the laboratory and recording the temperature history of the concrete for which strength is to be estimated.1.3 The values stated in SI units are to be regarded as standard for determining the maturity index. No other units of measurement are included for this purpose. There is, however, no restriction on the system of units for expressing strength in developing the strength-maturity relationship.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.2)1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C1074-19e1
标准名称:
Standard Practice for Estimating Concrete Strength by the Maturity Method
英文名称:
Standard Practice for Estimating Concrete Strength by the Maturity Method标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D3815/D3815M-05(2019) Standard Practice for Accelerated Weathering of Pressure-Sensitive Tapes by Open-Flame Carbon-Arc Exposure Apparatus
- ASTM D3816/D3816M-96(2020) Standard Test Method for Water Penetration Rate of Pressure-Sensitive Tapes
- ASTM D3822/D3822M-14(2020) Standard Test Method for Tensile Properties of Single Textile Fibers
- ASTM D3824-20 Standard Test Methods for Continuous Measurement of Oxides of Nitrogen in the Ambient or Workplace Atmosphere by Chemiluminescence
- ASTM D3829-20a Standard Test Method for Predicting the Borderline Pumping Temperature of Engine Oil
- ASTM D3831-22 Standard Test Method for Manganese in Gasoline By Atomic Absorption Spectroscopy
- ASTM D3836-13(2021) Standard Practice for Evaluation of Automotive Polish
- ASTM D3838-23 Standard Test Method for pH of Activated Carbon
- ASTM D3843-16(2021)e1 Standard Practice for Quality Assurance for Protective Coatings Applied to Nuclear Facilities
- ASTM D3849-22 Standard Test Method for Carbon Black—Morphological Characterization of Carbon Black Using Electron Microscopy
- ASTM D3850-19 Standard Test Method for Rapid Thermal Degradation of Solid Electrical Insulating Materials By Thermogravimetric Method (TGA)
- ASTM D3852-20 Standard Practice for Sampling and Handling Phenol, Cresols, and Cresylic Acid
- ASTM D3859-15(2023) Standard Test Methods for Selenium in Water
- ASTM D3861-22 Standard Test Method for Quantity of Water-Extractable Matter in Membrane Filters
- ASTM D3864-12(2021) Standard Guide for On-Line Monitoring Systems for Water Analysis