
【国外标准】 Standard Practice for Measuring Coating Thickness by Magnetic-Field or Eddy Current (Electromagnetic) Testing Methods
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 General—Most thickness gauges are not applicable to all combinations of coating-substrate thicknesses and materials. The limitations of a particular instrument are generally delineated by its manufacturer. The substrate material and coating combination to be measured as well as the inherent variations in the substrate and coating shall be reviewed prior to selecting the instrument to be used and the measurement accuracy required.4.2 Magnetic—Magnetic-type gauges measure either magnetic attraction between a magnet and a coating or its substrate, or reluctance of a magnetic flux path passing through the coating and substrate. These gauges are designed to measure thickness of a nonmagnetic coating on a magnetic substrate. Some of them will also measure thickness of nickel coatings on a magnetic or nonmagnetic substrate.64.3 Eddy Current—Eddy current-type thickness gauges are electronic instruments that measure variations in impedance of an eddy current inducing coil caused by coating thickness variations. They can only be used if the electrical conductivity of the coating differs significantly from that of the substrate.4.4 Accuracy—The accuracy of a measurement depends on the instrument, the foils, its calibration and standardization, and its operating conditions. The accuracy is also affected by the interferences listed in Section 5, such as part geometry (curvature), magnetic permeability, electrical conductivity, and surface roughness.NOTE 2: This practice under ideal conditions may allow the coating thickness to be determined within ±10 % of its true thickness or to within ±2.5 μm (or ±0.0001 in.), whichever is the greater. (See exceptions in Appendix X2.)1.1 This practice covers the use of magnetic- and eddy current-type thickness instruments (gauges) for nondestructive thickness measurement of a coating on a metal (that is, electrically conducting) substrate. The substrate may be ferrous or nonferrous. The coating or plating being measured may be electrically conducting or insulating as well as ferrous or non-ferrous.1.2 More specific uses of these instruments are covered by Practice D7091 and the following test methods issued by ASTM: Test Methods B244, B499, and B530.1.3 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.4 Measurements made in accordance with this practice will be in compliance with the requirements of ISO 2178 as printed in 1982.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E376-19
标准名称:
Standard Practice for Measuring Coating Thickness by Magnetic-Field or Eddy Current (Electromagnetic) Testing Methods
英文名称:
Standard Practice for Measuring Coating Thickness by Magnetic-Field or Eddy Current (Electromagnetic) Testing Methods标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation