
【国外标准】 Standard Test Method for Predicting Heat Buildup in PVC Building Products
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Heat buildup in PVC exterior building products due to absorption of the energy from the sun may lead to distortion problems. Heat buildup is affected by the color, emittance, absorptance, and reflectance of a product. Generally, the darker the color of the product, the more energy is absorbed and the greater is the heat buildup. However, even with the same apparent color, the heat buildup may vary due to the specific pigment system involved. The greatest heat buildup generally occurs in the color black containing carbon black pigment. The black control sample used in this test method contains 2.5 parts of furnace black per 100 parts of PVC suspension resin. The maximum temperature rise above ambient temperature for this black is 90°F (50°C) for a 45° or horizontal surface when the sun is perpendicular to the surface and 74°F (41°C) for a vertical surface assuming that the measurements were done on a cloudless day with no wind and heavy insulation on the back of the specimen.3 See Appendix X1.5.2 This test method allows the measurement of the temperature rise under a specific type heat lamp, relative to that of a black reference surface, thus predicting the heat buildup due to the sun's energy.5.3 The test method allows prediction of heat buildup of various colors or pigment systems, or both.5.4 This test method gives a relative heat buildup compared to black under certain defined severe conditions but does not predict actual application temperatures of the product. These will also depend on air temperature, incident angle of the sun, clouds, wind velocity, insulation, installation behind glass, etc.1.1 This test method covers prediction of the heat buildup in rigid and flexible PVC building products above ambient air temperature, relative to black, which occurs due to absorption of the sun's energy.NOTE 1: This test method is expected to be applicable to all types of colored plastics. The responsible subcommittee intends to broaden the scope beyond PVC when data on other materials is submitted for review.NOTE 2: There are no ISO standards covering the primary subject matter of this test method.1.2 Rigid PVC exterior profile extrusions for assembled windows and doors are covered in Specification D4726.1.3 Rigid PVC exterior profiles for fencing are covered in Specification F964.1.4 Rigid PVC siding profiles are covered in Specification D3679.1.5 Rigid PVC soffit profiles are covered in Specification D4477.1.6 Rigid PVC and Rigid CPVC plastic building products compounds are covered in Specification D4216.1.7 The text of this test method references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this test method.1.8 Units—The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific safety hazard statements are given in Section 7.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D4803-18
标准名称:
Standard Test Method for Predicting Heat Buildup in PVC Building Products
英文名称:
Standard Test Method for Predicting Heat Buildup in PVC Building Products标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E1415-22 Standard Guide for Conducting Static Toxicity Tests With Lemna gibba G3
- ASTM E1416-23 Standard Practice for Radioscopic Examination of Weldments
- ASTM E1421-99(2021) Standard Practice for Describing and Measuring Performance of Fourier Transform Mid-Infrared (FT-MIR) Spectrometers: Level Zero and Level One Tests
- ASTM E1424-22 Standard Test Method for Determining the Rate of Air Leakage Through Exterior Windows, Skylights, Curtain Walls, and Doors Under Specified Pressure and Temperature Differences Across the Specimen
- ASTM E1426-14(2019)e1 Standard Test Method for Determining the X-Ray Elastic Constants for Use in the Measurement of Residual Stress Using X-Ray Diffraction Techniques
- ASTM E1432-19 Standard Practice for Defining and Calculating Individual and Group Sensory Thresholds from Forced-Choice Data Sets of Intermediate Size
- ASTM E1439-12(2019) Standard Guide for Conducting the Frog Embryo Teratogenesis Assay-Xenopus (FETAX)
- ASTM E1440-23 Standard Guide for Acute Toxicity Test with the Rotifer Brachionus
- ASTM E1444/E1444M-22a Standard Practice for Magnetic Particle Testing for Aerospace
- ASTM E1448/E1448M-09(2023) Standard Practice for Calibration of Systems Used for Measuring Vehicular Response to Pavement Roughness
- ASTM E1453-20 Standard Guide for Storage of Magnetic Tape Media that Contains Analog or Digital Radioscopic Data
- ASTM E1458-12(2022) Standard Test Method for Calibration Verification of Laser Diffraction Particle Sizing Instruments Using Photomask Reticles
- ASTM E1459-13(2018) Standard Guide for Physical Evidence Labeling and Related Documentation
- ASTM E1461-13(2022) Standard Test Method for Thermal Diffusivity by the Flash Method
- ASTM E1473-22 Standard Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys