
【国外标准】 Standard Practice for Validating the Additive Manufacturing (AM) Production Process for Medical Devices Produced Using Laser Powder Bed Fusion
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Overview: 4.1.1 Assurance of product quality is derived from careful attention to many factors but is not limited to raw material acceptance, software workflow definition, product and process design and control, printing and post processing, equipment and systems installation, maintenance, and in-process and end-product testing.4.1.2 By managing these factors, a manufacturer can establish confidence that all finished manufactured units from successive lots will be acceptable and meet lot release criteria.4.1.3 The basic principles of quality assurance (QA) have as their goal the production of articles that are fit for their intended use. These principles may be stated as:4.1.3.1 Quality, safety, and effectiveness shall be designed and built into the product as well as the production process.4.1.3.2 AM product characteristics all cannot currently be verified after the process without destructive testing and therefore requires validation. Suitable consideration should be designed into the product and controls should be applied to the process during process validation.4.1.3.3 Critical steps of the production process impacting quality shall be controlled to maximize the probability that the finished product meets all quality and design specifications.4.1.4 Process validation is a key element in ensuring that these QA goals are met. Routine end-product testing alone is often not sufficient to assure product quality. Some end-product tests have limited sensitivity. In some cases, destructive testing would be required to show that the manufacturing process is adequate, and in other situations, end-product testing does not reveal all variations that may occur in the product that may have an impact on device performance. However, successfully validating a process may reduce the dependence on intensive in-process and finished product testing. Note that, in most cases, end-product testing plays a major role in supporting QA goals, that is, validation and end-product testing are not mutually exclusive.4.1.5 Key process variables should be monitored and documented using statistical process control where applicable. Analysis of the data collected from monitoring should establish the potential variability of process parameters for individual production runs to ensure that a process is within acceptable control limits and the equipment can consistently produce the product within specification.4.2 Preliminary Considerations: 4.2.1 A manufacturer should evaluate all factors that affect product quality through appropriate documented process characterization.4.2.2 Risk management and an analysis file shall be created in line with ISO 14971. These factors may vary considerably among different products, manufacturing technologies, and facilities. No single approach to process validation will be appropriate and complete in all cases; however, the following quality steps should be undertaken.4.2.3 All pertinent aspects of the production processes that have an impact on device design (product’s end use) should be considered during process validation. These aspects include, but are not necessarily limited to, performance, reliability, and stability. Performance limits and variation should be established for each characteristic acceptance criteria and expressed in readily measurable terms. Once a product specification is defined it is important that any changes to it be made in accordance with documented change control procedures and the device history file.1.1 This practice provides an overview of how to perform process validation for medical devices manufactured using PBF/LB/M. The topics that will be covered include machine qualifications, software used in the manufacturing process, the importance of design specification and verification on process validation, and raw materials.1.2 This practice also provides recommendations for process characterization, risk management, additive manufacturing (AM) facility qualification, and process control as a prerequisite for qualification activity, including installation qualification/operational qualification/performance qualification (IQ/OQ/PQ).1.3 The practice is primarily focused on non-device-specific AM system(s) validation. Additional information may be needed in reference to the performance of the actual device.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F3604-23
标准名称:
Standard Practice for Validating the Additive Manufacturing (AM) Production Process for Medical Devices Produced Using Laser Powder Bed Fusion
英文名称:
Standard Practice for Validating the Additive Manufacturing (AM) Production Process for Medical Devices Produced Using Laser Powder Bed Fusion标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E747-18 Standard Practice for Design, Manufacture and Material Grouping Classification of Wire Image Quality Indicators (IQI) Used for Radiology
- ASTM E749/E749M-17(2021) Standard Practice for Acoustic Emission Monitoring During Continuous Welding
- ASTM E751/E751M-17(2022) Standard Practice for Acoustic Emission Monitoring During Resistance Spot-Welding
- ASTM E756-05(2023) Standard Test Method for Measuring Vibration-Damping Properties of Materials
- ASTM E759/E759M-92(2023) Standard Test Method for Effect of Deflection on Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E760/E760M-92(2023) Standard Test Method for Effect of Impact on Bonding of Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E761/E761M-92(2023) Standard Test Method for Compressive Strength of Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E768-99(2018) Standard Guide for Preparing and Evaluating Specimens for Automatic Inclusion Assessment of Steel
- ASTM E776-23 Standard Test Method for Determination of Forms of Chlorine in Refuse-Derived Fuel
- ASTM E778-15(2021) Standard Test Methods for Nitrogen in Refuse-Derived Fuel Analysis Samples
- ASTM E779-19 Standard Test Method for Determining Air Leakage Rate by Fan Pressurization
- ASTM E780-17(2021) Standard Test Method for Measuring the Insulation Resistance of Mineral-Insulated, Metal-Sheathed Thermocouples and Mineral-Insulated, Metal-Sheathed Cable at Room Temperature
- ASTM E781-86(2023) Standard Practice for Evaluating Absorptive Solar Receiver Materials When Exposed to Conditions Simulating Stagnation in Solar Collectors with Cover Plates
- ASTM E782-95(2022) Standard Practice for Exposure of Cover Materials for Solar Collectors to Natural Weathering Under Conditions Simulating Operational Mode
- ASTM E784-89(2022) Standard Specification for Clamps, Utility, Laboratory, and Holders, Buret and Clamp