
【国外标准】 Standard Test Method for Determination of pHe of Denatured Fuel Ethanol and Ethanol Fuel Blends
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The hydrogen ion activity, as measured by pHe, is a good predictor of the corrosion potential of ethanol fuels. It is preferable to total acidity because total acidity does not measure activity of the hydrogen ions; overestimates the contribution of weak acids, such as carbonic acid; and can underestimate the corrosion potential of low concentrations of strong acids, such as sulfuric acid.1.1 This test method covers a procedure to determine a measure of the hydrogen ion activity of high ethanol content fuels. These include denatured fuel ethanol and ethanol fuel blends. The test method is applicable to denatured fuel ethanol and ethanol fuel blends containing ethanol at 51 % by volume, or more.1.2 Hydrogen ion activity as measured in this test method is defined as pHe. A pHe value for alcohol solutions is not comparable to pH values of water solutions.1.2.1 The value of pHe measured will depend somewhat on the fuel blend, the stirring rate, and the time the electrode is in the fuel.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Hydrogen ion activity in water is expressed as pH and hydrogen ion activity in ethanol is expressed as pHe.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6423-20a
标准名称:
Standard Test Method for Determination of pHe of Denatured Fuel Ethanol and Ethanol Fuel Blends
英文名称:
Standard Test Method for Determination of pHe of Denatured Fuel Ethanol and Ethanol Fuel Blends标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM C1472-16(2022) Standard Guide for Calculating Movement and Other Effects When Establishing Sealant Joint Width
- ASTM C1473-19 Standard Test Method for Radiochemical Determination of Uranium Isotopes in Urine by Alpha Spectrometry
- ASTM C1477-19 Standard Test Method for Isotopic Abundance Analysis of Uranium Hexafluoride and Uranyl Nitrate Solutions by Multi-Collector, Inductively Coupled Plasma-Mass Spectrometry
- ASTM C1479/C1479M-22 Standard Practice for Installation of Precast Concrete Sewer, Storm Drain, and Culvert Pipe Using Standard Installations
- ASTM C1483/C1483M-17(2022) Standard Specification for Exterior Solar Radiation Control Coatings on Buildings
- ASTM C1485-19 Standard Test Method for Critical Radiant Flux of Exposed Attic Floor Insulation Using an Electric Radiant Heat Energy Source
- ASTM C1486-18(2023) Standard Practice for Testing Chemical-Resistant Broadcast and Slurry-Broadcast Resin Monolithic Floor Surfacings
- ASTM C1487-19 Standard Guide for Remedying Structural Silicone Glazing
- ASTM C1489-15(2022) Standard Specification for Lime Putty for Structural Purposes
- ASTM C1498-04a(2023) Standard Test Method for Hygroscopic Sorption Isotherms of Building Materials
- ASTM C1499-19 Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature
- ASTM C150/C150M-22 Standard Specification for Portland Cement
- ASTM C1504-20 Standard Specification for Manufacture of Precast Reinforced Concrete Three-Sided Structures for Culverts and Storm Drains
- ASTM C1507-20 Standard Test Method for Radiochemical Determination of Strontium-90 in Soil
- ASTM C1508-18 Standard Test Method for Determination of Bromine and Chlorine in UF6 and Uranyl Nitrate by X-Ray Fluorescence (XRF) Spectroscopy