
【国外标准】 Standard Test Method for Acoustic Emission for Aerial Personnel Devices Without Supplemental Load Handling Attachments
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method provides a means of evaluating acoustic emissions generated by the rapid release of energy from localized sources within an aerial personnel device under controlled loading. The resultant energy releases occur during intentional application of a controlled predetermined load. These energy releases can be monitored and interpreted by qualified individuals.5.2 This test method permits testing of the major components of an aerial personnel device under controlled loading. This test method utilizes objective criteria for evaluation and may be discontinued at any time to investigate a particular area of concern or prevent a fault from continuing to ultimate failure.5.3 This test method provides a means of detecting acoustic emission sources that may be defects or irregularities, or both, affecting the structural integrity or intended use of the aerial personnel device.5.4 Sources of acoustic emission found with this test method shall be evaluated by either more refined acoustic emission test methods or other nondestructive techniques (visual, liquid penetrant, radiography, ultrasonics, magnetic particle, etc.). Other nondestructive tests may be required to locate defects present in aerial personnel devices.5.5 Defective areas found in aerial personnel devices by this test method should be repaired and retested as appropriate. Repair procedure recommendations are outside the scope of this test method.1.1 This test method describes a procedure for non-destructive testing using acoustic emission (AE) testing for aerial personnel devices, which do not have a supplemental load handling attachment.1.1.1 Equipment Covered—This test method covers the following types of vehicle-mounted insulated aerial personnel devices:1.1.1.1 Extensible boom aerial personnel devices,1.1.1.2 Articulating boom aerial personnel devices, and1.1.1.3 Any combination of 1.1.1.1 and 1.1.1.2.1.1.2 Equipment Not Covered—This test method does not cover any of the following equipment:1.1.2.1 Material-handling aerial devices,1.1.2.2 Digger-derricks with platform, and1.1.2.3 Cranes with platform.1.2 The AE test method is used to detect and area-locate emission sources. Verification of emission sources may require the use of other nondestructive test (NDT) methods, such as radiography, ultrasonics, magnetic particle, liquid penetrant, and visual inspection. Warning—This test method requires that external loads be applied to the superstructure of the vehicle under test. During the test, caution must be taken to safeguard personnel and equipment against unexpected failure or instability of the vehicle or components.NOTE 1: This test method is not intended to be a stand alone NDT method for the verification of the structural integrity of an aerial device. Other NDT methods should be used to supplement the results.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F914/F914M-20
标准名称:
Standard Test Method for Acoustic Emission for Aerial Personnel Devices Without Supplemental Load Handling Attachments
英文名称:
Standard Test Method for Acoustic Emission for Aerial Personnel Devices Without Supplemental Load Handling Attachments标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F2044-09(2019)e1 Standard Specification for Liquid Level Indicating Equipment, Electrical
- ASTM F2046-00(2022) Standard Specification for Tachometers, Various
- ASTM F2049-11(2017) Standard Safety Performance Specification for Fences/Barriers for Public, Commercial, and Multi-Family Residential Use Outdoor Play Areas
- ASTM F2050-19 Standard Consumer Safety Specification for Hand-Held Infant Carriers
- ASTM F2051-00(2022) Standard Specification for Implantable Saline-Filled Breast Prostheses
- ASTM F2054/F2054M-13(2020) Standard Test Method for Burst Testing of Flexible Package Seals Using Internal Air Pressurization Within Restraining Plates
- ASTM F2055-17(2021) Standard Test Method for Size and Squareness of Resilient Floor Tile by Dial Gauge Method
- ASTM F2059-21 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask
- ASTM F2061-17 Standard Practice for Chemical Protective Clothing: Wearing, Care, and Maintenance Instructions
- ASTM F2062-00(2018) Standard Specification for Square Drive Interconnections on Surgical Instruments
- ASTM F2064-17 Standard Guide for Characterization and Testing of Alginates as Starting Materials Intended for Use in Biomedical and Tissue Engineered Medical Product Applications
- ASTM F2075-20 Standard Specification for Engineered Wood Fiber for Use as a Playground Safety Surface Under and Around Playground Equipment
- ASTM F2076-01(2022) Standard Practice for Communicating an EMS Patient Report to Receiving Medical Facilities
- ASTM F2080-23 Standard Specification for Cold-Expansion Fittings with Metal Compression-Sleeves for Crosslinked Polyethylene (PEX) Pipe and SDR9 Polyethylene of Raised Temperature (PE-RT) Pipe
- ASTM F2082/F2082M-23 Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery