
【国外标准】 Standard Test Method for Shear Strength of Joints of Advanced Ceramics at Ambient Temperature
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Advanced ceramics can be candidate materials for structural applications requiring high degrees of wear and corrosion resistance, often at elevated temperatures.5.2 Joints are produced to enhance the performance and applicability of materials. While the joints between similar materials are generally made for manufacturing complex parts and repairing components, those involving dissimilar materials usually are produced to exploit the unique properties of each constituent in the new component. Depending on the joining process, the joint region may be the weakest part of the component. Since under mixed-mode and shear loading the load transfer across the joint requires reasonable shear strength, it is important that the quality and integrity of joint under in-plane shear forces be quantified. Shear strength data are also needed to monitor the development of new and improved joining techniques.5.3 Shear tests provide information on the strength and deformation of materials under shear stresses.5.4 This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation.5.5 For quality control purposes, results derived from standardized shear test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.1.1 This test method covers the determination of shear strength of joints in advanced ceramics at ambient temperature using asymmetrical four-point flexure. Test specimen geometries, test specimen fabrication methods, testing modes (that is, force or displacement control), testing rates (that is, force or displacement rate), data collection, and reporting procedures are addressed.1.2 This test method is used to measure shear strength of ceramic joints in test specimens extracted from larger joined pieces by machining. Test specimens fabricated in this way are not expected to warp due to the relaxation of residual stresses but are expected to be much straighter and more uniform dimensionally than butt-jointed test specimens prepared by joining two halves, which is not recommended. In addition, this test method is intended for joints, which have either low or intermediate strengths with respect to the substrate material to be joined. Joints with high strengths should not be tested by this test method because of the high probability of invalid tests resulting from fractures initiating at the reaction points rather than in the joint. Determination of the shear strength of joints using this test method is appropriate particularly for advanced ceramic matrix composite materials but also may be useful for monolithic advanced ceramic materials.1.3 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are noted in 8.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C1469-22
标准名称:
Standard Test Method for Shear Strength of Joints of Advanced Ceramics at Ambient Temperature
英文名称:
Standard Test Method for Shear Strength of Joints of Advanced Ceramics at Ambient Temperature标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3448-20 Standard Guide for Clinical Outcomes for Clinical Trials and/or Clinical Registries for Hip Reconstructive Surgery
- ASTM F3449-20 Standard Guide for Inclusion of Cyber Risks into Maritime Safety Management Systems in Accordance with IMO Resolution MSC.428(98)―Cyber Risks and Challenges
- ASTM F3450-20 Standard Guide for Flight Hazard and Surveillance Systems Personnel Certification
- ASTM F3455/F3455M-22 Standard Practice for Establishing the Minimum- and Maximum-Width Configurations for Crash Testing of Exceptionally Long Variable-Width Vehicle Barriers
- ASTM F3457-20 Standard Guide for Aircraft Certification Education Standards for Engineers and Professionals in Aerospace Industry
- ASTM F3459-21 Standard Specification for Rigid Poly Vinyl Chloride (PVC) Exterior Profiles Used for Sound Walls
- ASTM F3460-21 Standard Test Method for Seam Measurement Procedure for Baseballs and Softballs
- ASTM F3463-21 Standard Guide for Ensuring the Safety of Connected Consumer Products
- ASTM F3478-20 Standard Practice for Development of a Durability and Reliability Flight Demonstration Program for Low-Risk Unmanned Aircraft Systems (UAS) under FAA Oversight
- ASTM F3487-20 Standard Guide for Assessing the Service Life of a Brush Part Intended to Clean a Medical Device
- ASTM F3489-23 Standard Guide for Additive Manufacturing of Polymers — Material Extrusion — Recommendation for Material Handling and Evaluation of Static Mechanical Properties
- ASTM F3491-21 Standard Practice for Enhanced Indication Methods in Aircraft
- ASTM F3492-21 Standard Consumer Safety Specification for Child Safety Locks and Latches for Use with Cabinet Doors and Drawers
- ASTM F3495-23 Standard Test Methods for Determining the Static Failure Load of Ceramic Knee Femoral Components
- ASTM F3502-23a Standard Specification for Barrier Face Coverings