
【国外标准】 Standard Practice for Characterizing Uncertainty in Air Quality Measurements
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
6.1 A primary use intended for this practice is for qualifying ASTM International Standards as Standard Test Methods. In the past, a “Precision and Bias” report has been required. However, recently a statement of uncertainty has become an acceptable alternative to Guide D3670. Inclusion of such a statement with a method description simplifies comparison of ASTM Test Methods to analogous ISO and Committee for European Normalization (CEN) standards, now required to have uncertainty statements.6.2 Standardizing the characterization of sampling/analytical method performance is expected to be useful in other applications as well. For example, performance details are a necessity for justifying compliance decisions based on experimental air quality assessments (7). Documented uncertainty can form a basis for specific criteria defining acceptable sampling/analytical method performance.6.3 Furthermore, high quality atmospheric measurements are vital for making decisions as to how hazardous substances are to be controlled. Valid data are required for drawing reasonable epidemiological conclusions, for making sound decisions as to acceptable limits, as well as for determining the efficacy of a hazard control system.6.4 Finally, because of developing world-wide acceptance of ISO GUM for detailing measurements when statistics are simple, the practice should be useful in comparing ASTM International Test Methods to other published methods. The codification of statistical procedures may in fact minimize the difficulty in interpreting a plethora of individual, albeit possibly valid, approaches.1.1 This practice is for assisting developers and users of air quality methods for sampling concentrations of both airborne and settled materials in characterizing measurements as to uncertainty. Where possible, analysis into uncertainty components as recommended in the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (ISO GUM, (1)2) is suggested. Aspects of uncertainty estimation particular to air quality measurement are emphasized. For example, air quality assessment is often complicated by: the difficulty of taking replicate measurements owing to the large spatio-temporal variation in concentration values to be measured; systematic error or bias, both corrected and uncorrected; and the (rare) non-normal distribution of errors. This practice operates mainly through example. Background and mathematical development are relegated to appendices for optional reading.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7440-23
标准名称:
Standard Practice for Characterizing Uncertainty in Air Quality Measurements
英文名称:
Standard Practice for Characterizing Uncertainty in Air Quality Measurements标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D7439-21 Standard Test Method for Determination of Elements in Airborne Particulate Matter by Inductively Coupled Plasma–Mass Spectrometry
- 下一篇: ASTM D7441-08(2013) Standard Practice for Separation of Beryllium from Other Metals in Digestion and Extraction Solutions from Workplace Dust Samples (Withdrawn 2018)
- 推荐标准
- ASTM F2044-09(2019)e1 Standard Specification for Liquid Level Indicating Equipment, Electrical
- ASTM F2046-00(2022) Standard Specification for Tachometers, Various
- ASTM F2049-11(2017) Standard Safety Performance Specification for Fences/Barriers for Public, Commercial, and Multi-Family Residential Use Outdoor Play Areas
- ASTM F2050-19 Standard Consumer Safety Specification for Hand-Held Infant Carriers
- ASTM F2051-00(2022) Standard Specification for Implantable Saline-Filled Breast Prostheses
- ASTM F2054/F2054M-13(2020) Standard Test Method for Burst Testing of Flexible Package Seals Using Internal Air Pressurization Within Restraining Plates
- ASTM F2055-17(2021) Standard Test Method for Size and Squareness of Resilient Floor Tile by Dial Gauge Method
- ASTM F2059-21 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask
- ASTM F2061-17 Standard Practice for Chemical Protective Clothing: Wearing, Care, and Maintenance Instructions
- ASTM F2062-00(2018) Standard Specification for Square Drive Interconnections on Surgical Instruments
- ASTM F2064-17 Standard Guide for Characterization and Testing of Alginates as Starting Materials Intended for Use in Biomedical and Tissue Engineered Medical Product Applications
- ASTM F2075-20 Standard Specification for Engineered Wood Fiber for Use as a Playground Safety Surface Under and Around Playground Equipment
- ASTM F2076-01(2022) Standard Practice for Communicating an EMS Patient Report to Receiving Medical Facilities
- ASTM F2080-23 Standard Specification for Cold-Expansion Fittings with Metal Compression-Sleeves for Crosslinked Polyethylene (PEX) Pipe and SDR9 Polyethylene of Raised Temperature (PE-RT) Pipe
- ASTM F2082/F2082M-23 Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery