
【国外标准】 Standard Practice for Determination of Metal Purity Based on Elastic Constant Measurements Derived from Resonant Ultrasound Spectroscopy
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Since the beginning of human history, currency has existed in the form of metal coins and bullion. Thieves learned that shaving some precious metal provided a method to change its value. Substitution of common metals for precious metals of higher value was commonplace until weighing methods became so accurate, that it became easily detected. Alloys were also used as substitutes until inexpensive spectrometers became available which ended the counterfeiting practice. The rapid rise in the value of gold inspired the unscrupulous to find a new method. Tungsten was widely used for light bulb filaments until regulations changed that market. The great abundance of tungsten now available, coupled with the almost identical density of gold, presented a new opportunity.5.2 RUS provides a method to create an unique electronic signature for each piece tested which is operator independent.1.1 This practice is intended for use with resonant ultrasound spectrometers capable of exciting, measuring, recording, and analyzing multiple whole body mechanical vibration resonant frequencies within parts exhibiting acoustical ringing in the acoustic or ultrasonic, or both, resonant frequency ranges.1.2 This practice uses Resonant Ultrasound Spectroscopy (RUS) to distinguish conforming parts, as determined from qualified training sets, from those containing significant anomalies in their elastic properties.1.3 The basic functions of a RUS monitoring system are to detect and classify resonance phenomena. Solid structure resonances are governed by the part’s dimensions, density, and elastic properties. When a material substitution occurs in a precious metal, the chosen metals have almost identical densities and unchanged dimensions, leaving only the elastic properties to affect the resonances.1.4 This practice can be used to replace destructive methods, which damage the test object through drilling or melting, or both.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2985/E2985M-14(2019)
标准名称:
Standard Practice for Determination of Metal Purity Based on Elastic Constant Measurements Derived from Resonant Ultrasound Spectroscopy
英文名称:
Standard Practice for Determination of Metal Purity Based on Elastic Constant Measurements Derived from Resonant Ultrasound Spectroscopy标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F2044-09(2019)e1 Standard Specification for Liquid Level Indicating Equipment, Electrical
- ASTM F2046-00(2022) Standard Specification for Tachometers, Various
- ASTM F2049-11(2017) Standard Safety Performance Specification for Fences/Barriers for Public, Commercial, and Multi-Family Residential Use Outdoor Play Areas
- ASTM F2050-19 Standard Consumer Safety Specification for Hand-Held Infant Carriers
- ASTM F2051-00(2022) Standard Specification for Implantable Saline-Filled Breast Prostheses
- ASTM F2054/F2054M-13(2020) Standard Test Method for Burst Testing of Flexible Package Seals Using Internal Air Pressurization Within Restraining Plates
- ASTM F2055-17(2021) Standard Test Method for Size and Squareness of Resilient Floor Tile by Dial Gauge Method
- ASTM F2059-21 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask
- ASTM F2061-17 Standard Practice for Chemical Protective Clothing: Wearing, Care, and Maintenance Instructions
- ASTM F2062-00(2018) Standard Specification for Square Drive Interconnections on Surgical Instruments
- ASTM F2064-17 Standard Guide for Characterization and Testing of Alginates as Starting Materials Intended for Use in Biomedical and Tissue Engineered Medical Product Applications
- ASTM F2075-20 Standard Specification for Engineered Wood Fiber for Use as a Playground Safety Surface Under and Around Playground Equipment
- ASTM F2076-01(2022) Standard Practice for Communicating an EMS Patient Report to Receiving Medical Facilities
- ASTM F2080-23 Standard Specification for Cold-Expansion Fittings with Metal Compression-Sleeves for Crosslinked Polyethylene (PEX) Pipe and SDR9 Polyethylene of Raised Temperature (PE-RT) Pipe
- ASTM F2082/F2082M-23 Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery