
【国外标准】 Standard Test Method for Uranium by Iron (II) Reduction in Phosphoric Acid Followed by Chromium (VI) Titration in the Presence of Vanadium
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Factors governing selection of a method for the determination of uranium include available quantity of sample, homogeneity of material sampled, sample purity, desired level of reliability, and facility available equipment.5.2 This uranium assay method is referenced in the Test Methods for Chemical, Mass Spectrometric, and Spectrochemical Analysis of Nuclear-Grade Uranium Dioxide Powders and Pellets (Test Methods C696) and in the Test Methods for Chemical, Mass Spectrometric, and Spectrochemical, Nuclear, and Radiochemical Analysis of Nuclear-Grade Uranyl Nitrate Solutions (Test Methods C799). This uranium assay method may also be used for uranium hexafluoride and uranium ore concentrate. This test method determines 20 mg to 200 mg of uranium; is applicable to product, fuel, and scrap material after the material is dissolved; is tolerant towards most metallic impurity elements usually specified in product and fuel; and uses no special equipment.5.3 The ruggedness of the titration method has been studied for both the volumetric (6) and the weight (7) titration of uranium with dichromate.5.4 Fitness for Purpose of Safeguards and Nuclear Safety Application—Methods intended for use in safeguards and nuclear safety applications shall meet the requirements specified by Guide C1068 for use in such applications.5.4.1 When used in conjunction with the appropriate certified reference materials (SRM6 or CRM), this procedure can demonstrate traceability to the national measurement base. However, use of the test method does not automatically guarantee regulatory acceptance of the resulting safeguards measurements. It remains the sole responsibility of the user of this test method to assure that its application to safeguards has the approval of the proper regulatory authorities.1.1 This test method, commonly referred to as the Modified Davies and Gray technique, covers the titration of uranium in product, fuel, and scrap materials after the material is dissolved. The test method is versatile and has been ruggedness tested. With appropriate sample preparation, this test method can give precise and unbiased uranium assays over a wide variety of material types (1, 2).2 Details of the titration procedure in the presence of plutonium with appropriate modifications are given in Test Method C1204.1.2 Uranium levels titrated are usually 20 mg to 50 mg, but up to 200 mg uranium can be titrated using the reagent volumes stated in this test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific safeguard and safety precaution statements, see Section 5.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C1267-17(2022)
标准名称:
Standard Test Method for Uranium by Iron (II) Reduction in Phosphoric Acid Followed by Chromium (VI) Titration in the Presence of Vanadium
英文名称:
Standard Test Method for Uranium by Iron (II) Reduction in Phosphoric Acid Followed by Chromium (VI) Titration in the Presence of Vanadium标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3016/F3016M-19 Standard Test Method for Surrogate Testing of Vehicle Impact Protective Devices at Low Speeds
- ASTM F3019/F3019M-19 Standard Specification for Chromium Free Zinc-Flake Composite, with or without Integral Lubricant, Corrosion Protective Coatings for Fasteners
- ASTM F302-09(2021) Standard Practice for Field Sampling of Aerospace Fluids in Containers
- ASTM F3021-17 Standard Specification for Universal Design of Fitness Equipment for Inclusive Use by Persons with Functional Limitations and Impairments
- ASTM F3022-16e1 Standard Test Method for Evaluating the Universal Design of Fitness Equipment for Inclusive Use by Persons with Functional Limitations and Impairments
- ASTM F3023-18 Standard Test Methods for Evaluating Design and Performance Characteristics of Stationary Upright and Recumbent Exercise Bicycles and Upper and Total Body Ergometers
- ASTM F3026-14(2019) Standard Guide for Helicopter Inland Search and Rescue (SAR) Crew Chief
- ASTM F3027-18 Standard Guide for Training of Personnel Operating in Mountainous Terrain (Mountain Endorsement)
- ASTM F3033-16(2021) Standard Practice for Installation of a Single-Sized, Cured-In-Place Liner Utilizing an Inflatable Bladder for Resurfacing Manhole Walls of Various Shapes and Sizes
- ASTM F3034-21 Standard Specification for Billets made by Winding Molten Extruded Stress-Rated High Density Polyethylene (HDPE)
- ASTM F3035-22 Standard Practice for Production Acceptance in the Manufacture of a Fixed Wing Light Sport Aircraft
- ASTM F3036-21 Standard Guide for Testing Absorbable Stents
- ASTM F3038-21 Standard Test Method for Timed Evaluation of Forced-Entry-Resistant Systems
- ASTM F3043-15 Standard Specification for “Twist Off” Type Tension Control Structural Bolt/Nut/Washer Assemblies, Alloy Steel, Heat Treated, 200 ksi Minimum Tensile Strength
- ASTM F3045-21 Standard Test Method for Evaluation of the Type and Viscoelastic Stability of Water-in-oil Mixtures Formed from Crude Oil and Petroleum Products Mixed with Water