微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 260元 / 折扣价: 221

在线阅读 收 藏

1.1 This test method covers the determination of the ignition of a dust dispersed in air, within a closed vessel.1.2 This test method provides a measure of dust explosion pressure and rate of pressure rise. It does not provide a definitive determination of the flammability of a dust and has other severe limitations which are identified in Section 5. The preferred method for the design of safety equipment is Test Method E1226.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific safety precautions see Section 7.1.4 The values stated in inch-pound units are to be regarded as the standard. The values in parentheses are for information only.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is intended for the determination of the cylinder heat transfer performance value of a flame-resistant material or combination of materials when exposed to a continuous and constant heat source. This is used to compare materials used in flame-resistant clothing for workers when exposed to combined convective and radiant thermal hazards.NOTE 3: Air movement at the face of the specimen and around the calorimeter can affect the measured heat transferred due to forced convective heat losses. Minimizing air movement around the specimen and test apparatus will aid in the repeatability of the results.5.2 This test method maintains the specimen with and without air gaps in a static, horizontal position and does not involve movement unless the test specimen naturally changes due to the thermal exposure.5.3 This test method specifies a standardized 84 ± 2 kW/m2 (2 ± 0.05 cal/cm2·s) exposure condition. Different exposure conditions have the potential to produce different results. Use of other exposure conditions that are representative of the expected hazard are allowed but shall be reported with the results, along with a determination of the exposure energy level stability.5.4 This test method does not predict skin burn injury from the heat exposure.5.5 This test method is similar to Test Method F2700 in that it uses the same energy heat source, water-cooled shutter, data acquisition, and measures the heat transfer through protective clothing materials using a copper calorimeter. This test method differs from Test Method F2700 in the usage of an eccentric instrumented cylinder mounted horizontally that allows for the thermal shrinkage of materials when tested.1.1 This test method measures the thermal response of a material or combination of materials using a combined convective/radiant heat transmission apparatus consisting of an eccentric cylindrical test sensor. It can be used to estimate the non-steady state thermal transfer through flame-resistant materials used in clothing when subjected to a continuous, combined convective and radiant heat exposure. The average incident heat flux is 84 kW/m2 (2 cal/cm2·s), with durations up to 30 s.1.1.1 This test method is not applicable to materials that melt, drip, or cause falling debris during the test.NOTE 1: Because of the arrangement of the equipment, if materials melt, drip, or cause falling debris during the test, the test result is invalid.1.2 Heat transmission through clothing is largely determined by its thickness, including any air gaps. The air gaps can vary considerably in different areas of the human body. This method provides a means of grading materials when tested under standard test conditions and an air gap exists between the fabric and the sensor. During the exposure, fabric temperatures can exceed 400 °C. At these temperatures some fabrics are not dimensionally stable and can shrink or stretch. The cylindrical geometry used in this test method allows such motion to occur, which will affect the time to achieve the end point of the test. These effects are not demonstrated in planar geometry test methods such as Test Method F2700.1.3 This test method is used to measure and describe the response of materials, products, or assemblies to heat under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.4 The measurements obtained and observations noted only apply to the particular material(s) tested using the specified heat flux, flame distribution, and duration.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units or other units commonly used for thermal testing. If appropriate, round the non-SI units for convenience.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Manufacturers of thermal insulation express the performance of their products in charts and tables showing heat gain or loss per unit surface area or unit length of pipe. This data is presented for typical insulation thicknesses, operating temperatures, surface orientations (facing up, down, horizontal, vertical), and in the case of pipes, different pipe sizes. The exterior surface temperature of the insulation is often shown to provide information on personnel protection or surface condensation. However, additional information on effects of wind velocity, jacket emittance, ambient conditions and other influential parameters may also be required to properly select an insulation system. Due to the large number of combinations of size, temperature, humidity, thickness, jacket properties, surface emittance, orientation, and ambient conditions, it is not practical to publish data for each possible case, Refs (7,8).5.2 Users of thermal insulation faced with the problem of designing large thermal insulation systems encounter substantial engineering cost to obtain the required information. This cost can be substantially reduced by the use of accurate engineering data tables, or available computer analysis tools, or both. The use of this practice by both manufacturers and users of thermal insulation will provide standardized engineering data of sufficient accuracy for predicting thermal insulation system performance. However, it is important to note that the accuracy of results is extremely dependent on the accuracy of the input data. Certain applications may need specific data to produce meaningful results.5.3 The use of analysis procedures described in this practice can also apply to designed or existing systems. In the rectangular coordinate system, Practice C680 can be applied to heat flows normal to flat, horizontal or vertical surfaces for all types of enclosures, such as boilers, furnaces, refrigerated chambers and building envelopes. In the cylindrical coordinate system, Practice C680 can be applied to radial heat flows for all types of piping circuits. In the spherical coordinate system, Practice C680 can be applied to radial heat flows to or from stored fluids such as liquefied natural gas (LNG).5.4 Practice C680 is referenced for use with Guide C1055 and Practice C1057 for burn hazard evaluation for heated surfaces. Infrared inspection, in-situ heat flux measurements, or both are often used in conjunction with Practice C680 to evaluate insulation system performance and durability of operating systems. This type of analysis is often made prior to system upgrades or replacements.5.5 All porous and non-porous solids of natural or man-made origin have temperature dependent thermal conductivities. The change in thermal conductivity with temperature is different for different materials, and for operation at a relatively small temperature difference, an average thermal conductivity may suffice. Thermal insulating materials (k < 0.85 {Btu·in}/{h·ft 2·°F}) are porous solids where the heat transfer modes include conduction in series and parallel flow through the matrix of solid and gaseous portions, radiant heat exchange between the surfaces of the pores or interstices, as well as transmission through non-opaque surfaces, and to a lesser extent, convection within and between the gaseous portions. With the existence of radiation and convection modes of heat transfer, the measured value should be called apparent thermal conductivity as described in Terminology C168. The main reason for this is that the premise for pure heat conduction is no longer valid, because the other modes of heat transfer obey different laws. Also, phase change of a gas, liquid, or solid within a solid matrix or phase change by other mechanisms will provide abrupt changes in the temperature dependence of thermal conductivity. For example, the condensation of the gaseous portions of thermal insulation in extremely cold conditions will have an extremely influential effect on the apparent thermal conductivity of the insulation. With all of this considered, the use of a single value of thermal conductivity at an arithmetic mean temperature will provide less accurate predictions, especially when bridging temperature regions where strong temperature dependence occurs.5.6 The calculation of surface temperature and heat loss or gain of an insulated system is mathematically complex, and because of the iterative nature of the method, computers best handle the calculation. Computers are readily available to most producers and consumers of thermal insulation to permit the use of this practice.5.7 Computer programs are described in this practice as a guide for calculation of the heat loss or gain and surface temperatures of insulation systems. The range of application of these programs and the reliability of the output is a primary function of the range and quality of the input data. The programs are intended for use with an “interactive” terminal. Under this system, intermediate output guides the user to make programming adjustments to the input parameters as necessary. The computer controls the terminal interactively with program-generated instructions and questions, which prompts user response. This facilitates problem solution and increases the probability of successful computer runs.5.8 The user of this practice may wish to modify the data input and report sections of the computer programs presented in this practice to fit individual needs. Also, additional calculations may be desired to include other data such as system costs or economic thickness. No conflict exists with such modifications as long as the user verifies the modifications using a series of test cases that cover the range for which the new method is to be used. For each test case, the results for heat flow and surface temperature must be identical (within resolution of the method) to those obtained using the practice described herein.5.9 This practice has been prepared to provide input and output data that conforms to the system of units commonly used by United States industry. Although modification of the input/output routines could provide an SI equivalent of the heat flow results, no such “metric” equivalent is available for some portions of this practice. To date, there is no accepted system of metric dimensions for pipe and insulation systems for cylindrical shapes. The dimensions used in Europe are the SI equivalents of American sizes (based on Practice C585), and each has a different designation in each country. Therefore, no SI version of the practice has been prepared, because a standard SI equivalent of this practice would be complex. When an international standard for piping and insulation sizing occurs, this practice can be rewritten to meet those needs. In addition, it has been demonstrated that this practice can be used to calculate heat transfer for circumstances other than insulated systems; however, these calculations are beyond the scope of this practice.1.1 This practice provides the algorithms and calculation methodologies for predicting the heat loss or gain and surface temperatures of certain thermal insulation systems that can attain one dimensional, steady- or quasi-steady-state heat transfer conditions in field operations.1.2 This practice is based on the assumption that the thermal insulation systems can be well defined in rectangular, cylindrical or spherical coordinate systems and that the insulation systems are composed of homogeneous, uniformly dimensioned materials that reduce heat flow between two different temperature conditions.1.3 Qualified personnel familiar with insulation-systems design and analysis should resolve the applicability of the methodologies to real systems. The range and quality of the physical and thermal property data of the materials comprising the thermal insulation system limit the calculation accuracy. Persons using this practice must have a knowledge of the practical application of heat transfer theory relating to thermal insulation materials and systems.1.4 The computer program that can be generated from the algorithms and computational methodologies defined in this practice is described in Section 7 of this practice. The computer program is intended for flat slab, pipe and hollow sphere insulation systems.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

4.1 Intact block samples are suitable for laboratory tests where large-sized samples of intact material are required or where such sampling is more practical than conventional tube sampling (Practices D1587/D1587M and D6519), or both.4.2 The intact block method of sampling is advantageous where the soil to be sampled is near the ground surface. It is the best available method for obtaining large intact samples of very stiff and brittle soils, partially cemented soils, and some soils containing coarse gravel.4.3 Excavating a column of soil will relieve stresses in the soil and may result in some expansion of the soil and a corresponding decrease in its unit weight (density) or increase in sampling disturbance, or both. Usually the expansion is small in magnitude because of the shallow depth. Stress changes alone can cause enough disturbances in some soils to significantly alter their engineering properties.4.4 The chain saw has proved advantageous in sampling difficult soils, which are blocky, slickensided, or materials containing alternating layers of hard and soft material.3 The chain saw uses a special carbide-tipped chain.4NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective sampling. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 These practices outline the procedures for obtaining intact block (cubical and cylindrical) soil samples.1.2 Intact block samples are obtained for laboratory tests to determine the strength, consolidation, permeability, and other geotechnical engineering or physical properties of the intact soil.1.3 Two sampling practices are presented. Practice A covers cubical block sampling, while Practice B covers cylindrical block sampling.1.4 These practices usually involve test pit excavation and are limited to relatively shallow depths. Except in the case of large diameter (that is, diameters greater than 0.8 m [2.5 ft]) bored shafts of circular cross-section in unsaturated soils, for depths greater than about 1 to 11/2 meters [3 to 5 ft] or depths below the water table, the cost and difficulties of excavating, cribbing, and dewatering generally make block sampling impractical and uneconomical. For these conditions, use of a thin-walled push tube soil sampler (Practice D1587/D1587M), a piston-type soil sampler (Practice D6519), or Hollow-Stem Auger (Practice D6151/D6151M), Dennison, or Pitcher-type soil core samplers, or freezing the soil and coring may be required.1.5 These practices do not address environmental sampling; consult Guides D6169/D6169M and D6232 for information on sampling for environmental investigations.1.6 Successful sampling of granular materials requires sufficient cohesion, cementation, or apparent cohesion (due to moisture tension (suction)) of the soil for it to be isolated in a column shape without undergoing excessive deformations. Additionally, care must be exercised in the excavation, preservation and transportation of intact samples (see Practice D4220/D4220M, Group D).1.7 The values stated in either SI units or inch-pound units [given in brackets] are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.8 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by this standard.1.8.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.9 These practices offer a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of these practices may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word "Standard" in the title of this document means only that the document has been approved through the ASTM consensus process.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 1 The ball dynamic stiffness is a measure of a ball’s hardness. Its measurement is conducted to represent bat-ball impact forces. It is normalized by the ball weight and speed to minimize the influence of manufacturing and test variations from the measure.5.2 The cylindrical coefficient of restitution is a ball property of relative velocity change caused by impact with a cylindrical surface.5.3 This test method compares the performance of baseballs and softballs after impact with a cylindrical test surface.5.4 Sports associations can use DS and CCOR measurements in specifications for official baseballs and softballs.1.1 This procedure describes a method of measuring the dynamic stiffness (DS) and cylindrical coefficient of restitution (CCOR) of baseballs and softballs providing similar impact forces and ball deformation as are observed in a bat-ball collision.1.2 This procedure is for a ball that is intended for the game of baseball or softball.1.3 The test method is based on ball speed measurements before and after impact with a cylindrical test surface and the impact force between the ball and impacted surface.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Cast-in-place cylinder strength relates to the strength of concrete in the structure due to the similarity of curing conditions because the cylinder is cured within the slab. However, due to differences in moisture condition, degree of consolidation, specimen size, and length-diameter ratio, there is not a unique relationship between the strength of cast-in-place cylinders and cores of the same age. When cores can be drilled undamaged and tested in the same moisture condition as the cast-in-place cylinders, the strength of the cylinders can be expected to be on average 10 % higher than the cores at ages up to 91 days for specimens of the same size and length-diameter ratio.44.2 Strength of cast-in-place cylinders may be used for various purposes, such as estimating the load-bearing capacity of slabs, determining the time of form and shore removal, and determining the effectiveness of curing and protection.AbstractThis test method covers the determination of strength of cylindrical concrete specimens that have been molded in place using special molds attached to formwork. A concrete cylinder mold assembly consisting of a mold and a tubular support member is fastened within the concrete formwork prior to placement of the concrete. The elevation of the mold upper edge is adjusted to correspond to the plane of the finished slab surface. The mold support prevents direct contact of the slab concrete with the outside of the mold and permits its easy removal from the hardened concrete. Strength of cast-in-place cylinders may be used for various purposes, such as estimating the load-bearing capacity of slabs, determining the time of form and shore removal, and determining the effectiveness of curing and protection. Consolidation of concrete in the mold may be varied to simulate the conditions of placement. Internal vibration of concrete in the mold is prohibited except under special circumstances.1.1 This test method covers the determination of strength of cylindrical concrete specimens that have been molded in place using special molds attached to formwork. This test method is limited to use in slabs where the depth of concrete is from 125 mm to 300 mm [5 in. to 12 in.].1.2 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.2)1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Flexibility is that property of a material which allows it to be deformed by bending or rolling without cracking, breaking, or other permanent defects, using whatever force is necessary to bend or roll it. Flexibility is an important characteristic of flooring in that it provides for ease of handling in rolling, cutting, and fitting.1.1 This test method covers the determination of the flexibility of resilient flooring materials by means of cylindrical mandrel apparatus. It is especially applicable to sheet goods and some tiles.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
AS 1975.1-1977 Milling cutters Cylindrical cutters, spindle and arbor driven 被代替 发布日期 :  1970-01-01 实施日期 : 

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

1.1 This test method covers the creep behavior of intact cylindrical soft rock core specimens in uniaxial compression. It specifies the apparatus, instrumentation, and procedures for determining the strain as a function of time under sustained load. Soft rocks include such materials as salt and potash, which often exhibit very large strain at failure.1.2 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D 6026.1.2.1 The method used to specifiy how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.3 The values stated SI units are to be regarded as the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This test method covers the creep behavior of intact cylindrical rock core specimens' in triaxial compression. It specifies the apparatus, instrumentation, and procedures for determining the strain as a function of time under sustained load.1.2 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D 6026.1.2.1 The method used to specifiy how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.3 The values stated in SI units are to be regarded as the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 7.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

3.1 This practice shall be used when ultrasonic inspection from the bore surface is required by the order or specification for inspection purposes in which the acceptance of the forging is based on limitations of the number, amplitude, or location of discontinuities or a combination thereof, which leads to ultrasonic indications.3.2 The acceptance criteria shall be stated clearly as order requirements.3.3 This practice requires pitch-catch search unit with twin transducers, which depending on the angle, are sensitive only to 2 in. to 3 in. [50 mm to 75 mm] into the metal from the bore surface.1.1 This practice covers a basic procedure of ultrasonically inspecting cylindrical forgings with bores from the bore surface.1.2 This practice applies to the manual testing mode. It does not restrict the use of other testing modes, such as mechanized or automated.1.3 This practice applies to cylindrical forgings having bore sizes equal to or greater than 2.5 in. [64 mm].1.4 This practice is expressed in inch-pound and SI units; however, the inch-pound units shall apply unless the purchase order or contract specifies the applicable “M” specification designation (SI units). The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

3.1 This practice describes procedures for providing plane surfaces on the ends of freshly molded concrete cylinders, hardened cylinders, or drilled concrete cores when the end surfaces do not conform with the planeness and perpendicularity requirements of applicable standards. Practice C1231/C1231M describes alternative procedures using unbonded caps or pad caps.1.1 This practice covers apparatus, materials, and procedures for capping freshly molded concrete cylinders with neat cement and hardened cylinders and drilled concrete cores with high-strength gypsum paste or sulfur mortar.1.2 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precaution statements see 4.3.1 and 6.2.4.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, quality control, characterization, and design data generation purposes. This test method is intended to be used with ceramics whose strength is 50 MPa (~7 ksi) or greater. The test method may also be used with glass test specimens, although Test Methods C158 is specifically designed to be used for glasses. This test method may be used with machined, drawn, extruded, and as-fired round specimens. This test method may be used with specimens that have elliptical cross section geometries.4.2 The flexure strength is computed based on simple beam theory with assumptions that the material is isotropic and homogeneous, the moduli of elasticity in tension and compression are identical, and the material is linearly elastic. The average grain size should be no greater than one-fiftieth of the rod diameter. The homogeneity and isotropy assumptions in the standard rule out the use of this test for continuous fiber-reinforced ceramics.4.3 Flexural strength of a group of test specimens is influenced by several parameters associated with the test procedure. Such factors include the loading rate, test environment, specimen size, specimen preparation, and test fixtures (1-3).3 This method includes specific specimen-fixture size combinations, but permits alternative configurations within specified limits. These combinations were chosen to be practical, to minimize experimental error, and permit easy comparison of cylindrical rod strengths with data for other configurations. Equations for the Weibull effective volume and Weibull effective surface are included.4.4 The flexural strength of a ceramic material is dependent on both its inherent resistance to fracture and the size and severity of flaws in the material. Flaws in rods may be intrinsically volume-distributed throughout the bulk. Some of these flaws by chance may be located at or near the outer surface. Flaws may alternatively be intrinsically surface-distributed with all flaws located on the outer specimen surface. Grinding cracks fit the latter category. Variations in the flaws cause a natural scatter in strengths for a set of test specimens. Fractographic analysis of fracture surfaces, although beyond the scope of this standard, is highly recommended for all purposes, especially if the data will be used for design as discussed in Refs (3-5) and Practices C1322 and C1239.4.5 The three-point test configuration exposes only a very small portion of the specimen to the maximum stress. Therefore, three-point flexural strengths are likely to be greater than four-point flexural strengths. Three-point flexure has some advantages. It uses simpler test fixtures, it is easier to adapt to high temperature and fracture toughness testing, and it is sometimes helpful in Weibull statistical studies. It also uses smaller force to break a specimen. It is also convenient for very short, stubby specimens which would be difficult to test in four-point loading. Nevertheless, four-point flexure is preferred and recommended for most characterization purposes.1.1 This test method is for the determination of flexural strength of rod-shaped specimens of advanced ceramic materials at ambient temperature. In many instances it is preferable to test round specimens rather than rectangular bend specimens, especially if the material is fabricated in rod form. This method permits testing of machined, drawn, or as-fired rod-shaped specimens. It allows some latitude in the rod sizes and cross section shape uniformity. Rod diameters between 1.5 and 8 mm and lengths from 25 to 85 mm are recommended, but other sizes are permitted. Four-point-1/4-point as shown in Fig. 1 is the preferred testing configuration. Three-point loading is permitted. This method describes the apparatus, specimen requirements, test procedure, calculations, and reporting requirements. The method is applicable to monolithic or particulate- or whisker-reinforced ceramics. It may also be used for glasses. It is not applicable to continuous fiber-reinforced ceramic composites.FIG. 1 Four-Point-1/4-Point Flexure Loading Configuration1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 Care must be exercised in the interpretation of the significance of compressive strength determinations by this test method since strength is not a fundamental or intrinsic property of concrete made from given materials. Values obtained will depend on the size and shape of the specimen, batching, mixing procedures, the methods of sampling, molding, and fabrication and the age, temperature, and moisture conditions during curing.5.2 This test method is used to determine compressive strength of cylindrical specimens prepared and cured in accordance with Practices C31/C31M, C192/C192M, C617/C617M, C943, C1176/C1176M, C1231/C1231M, and C1435/C1435M, and Test Methods C42/C42M, C873/C873M, and C1604/C1604M.5.3 The results of this test method are used as a basis for quality control of concrete proportioning, mixing, and placing operations; determination of compliance with specifications; control for evaluating effectiveness of admixtures; and similar uses.5.4 The individual who tests concrete cylinders for acceptance testing shall meet the concrete laboratory technician requirements of Practice C1077, including an examination requiring performance demonstration that is evaluated by an independent examiner.NOTE 1: Certification equivalent to the minimum guidelines for ACI Concrete Laboratory Technician, Level I or ACI Concrete Strength Testing Technician will satisfy this requirement.1.1 This test method covers determination of compressive strength of cylindrical concrete specimens such as molded cylinders and drilled cores. It is limited to concrete having a density in excess of 800 kg/m3 [50 lb/ft3].1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The inch-pound units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.(Warning—Means should be provided to contain concrete fragments during sudden rupture of specimens. Tendency for sudden rupture increases with increasing concrete strength and it is more likely when the testing machine is relatively flexible. The safety precautions given in R0030 are recommended.)1.4 The text of this standard references notes which provide explanatory material. These notes shall not be considered as requirements of the standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
27 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页