微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
CAN/CSA-Z107.58-02 Noise Emission Declarations for Machinery 现行 发布日期 :  1970-01-01 实施日期 : 

Update #1 was published as notification that this is now a National Standard of Canada This PDF includes Update #1 1. Scope 1.1 This Standard is intended for manufacturers and purchasers of machinery sold in, or exported from, Canada. It is also

定价: 546元 / 折扣价: 465

在线阅读 收 藏

5.1 This test method is intended for use with other standards that address the collection and preparation of samples (dusts by wipe, dried paint chips, and soils) that are obtained during the assessment or mitigation of lead hazards from buildings and related structures.5.2 Laboratories analyzing samples obtained during the assessment or mitigation of lead hazards from buildings and related structures shall conform to Practice E1583, or shall be recognized for lead analysis as promulgated by authorities having jurisdiction, or both.NOTE 1: In the United States of America, laboratories performing analysis of samples collected during lead-based paint activities are required to be accredited to ISO/IEC 17025 and to other requirements promulgated by the Environmental Protection Agency (EPA).5.3 This test method may also be used to analyze similar samples from other environments such as toxic characteristic extracts of waste sampled using Guide E1908 as prepared for analysis using EPA SW-846 Test Method 1311.1.1 This test method specifies a procedure for analysis of dried paint, soil, and dust wipe samples collected in and around buildings and related structures for lead content using inductively coupled plasma-optical emission spectroscopy (ICP-OES).1.2 This test method should be used by analysts experienced in the use of ICP-OES, the interpretation of spectral and matrix interferences, and procedures for their correction. For determination of lead (Pb) and other metals in air by ICP-OES, see Test Method D7035.1.3 This test method cites specific methods for preparing test solutions of dried paint, soil, and wipe samples for analysis.1.4 It is the user’s responsibility to ensure the validity of this test method for sampling materials of untested matrices.1.5 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-OES instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices or the precision between instruments of the same make and model.1.6 This test method contains notes that are explanatory and are not part of the mandatory requirements of this test method.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7.1 Exception—The inch-pound and SI units shown for wipe sampling data are to be individually regarded as standard for wipe sampling data.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method provides a means of evaluating acoustic emissions generated by the rapid release of energy from localized sources within an APD under controlled loading. The resultant energy releases occur during intentional application of a controlled predetermined load. These energy releases can be monitored and interpreted by qualified individuals.5.2 This test method permits testing of the major components of an aerial device under controlled loading. This test method utilizes objective criteria for evaluation and may be discontinued at any time to investigate a particular area of concern or prevent a fault from continuing to ultimate failure.5.3 This test method provides a means of detecting acoustic emissions that may be defects or irregularities, or both, affecting the structural integrity or intended use of the aerial device.5.4 Sources of acoustic emission found with this test method shall be evaluated by either more refined acoustic emission test methods or other nondestructive techniques (visual, liquid penetrant, radiography, ultrasonics, magnetic particle, etc.). Other nondestructive tests may be required to locate defects present in APDs.5.5 Defective areas found in aerial devices by this test method should be repaired and retested as appropriate. Repair procedure recommendations are outside the scope of this test method.1.1 This test method describes a procedure for acoustic emission (AE) testing of aerial personnel devices (APDs) with supplemental load handling attachments.1.1.1 Equipment Covered—This test method covers the following types of vehicle-mounted aerial personnel devices with supplemental load handling attachments:1.1.1.1 Extensible-boom APDs,1.1.1.2 Articulating-boom APDs, and1.1.1.3 Any combination of 1.1.1.1 and 1.1.1.2.1.1.2 Equipment Not Covered—This test method does not cover any of the following equipment:1.1.2.1 Aerial personnel devices without supplemental load handling attachments,1.1.2.2 Digger-derricks with platform,1.1.2.3 Cranes with platform, and1.1.2.4 Aerial devices with load-lifting capabilities located anywhere other than adjacent to the platform.NOTE 1: This test method is not intended to be a stand-alone NDT method for the verification of the structural integrity of an aerial device. Other NDT methods should be used to supplement the results.1.2 The AE test method is used to detect and area-locate emission sources. Verification of emission sources may require the use of other nondestructive test (NDT) methods, such as radiography, ultrasonics, magnetic particle, liquid penetrant, and visual inspection. (Warning—This test method requires that external loads be applied to the superstructure of the vehicle under test. During the test, caution must be taken to safeguard personnel and equipment against unexpected failure or instability of the vehicle or components.)1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

Direct-reading polychromators are instruments commonly used for multi-element spectrochemical analysis. This guide seeks to describe those aspects of such instruments that are of significance in achieving useful spectrochemical performance. Awareness of parameters described in this practice will make manufacturers cognizant of factors they should consider in designing instruments, assist purchasers of instruments in making intelligent comparisons of competing designs, and make users aware of the compromises they must make in performing particular determinations.Adequate description of spectrometers permits forming qualified appraisals on three important performance characteristics: accuracy of analysis, detection limits, and freedom from line interferences.1.1 This guide covers features of a spectrometer or polychromator used for optical emission, direct-reading, spectrochemical analysis. A polychromator in this sense consists of a spectrometer with an extended and fixed wavelength range and an array of fixed exit slits to isolate the spectral lines of the elements to be measured.1.1.1 This guide does not apply to direct-reading systems that employ echelle spectrometers and vidicon or other detectors where the design parameters are quite different.1.2 This guide covers only the optical portion of the instrument, from excitation stand to photomultipliers.1.2.1 Only general statements are made about source units.1.2.2 Photomultipliers are included to the extent that they are mounted within the spectrometer to convert optical intensities to electrical signals, and establish the instrumental precision of each channel as a light measuring device. Readout systems are not included.1.3 It is not the purpose of this guide to establish binding specifications or tolerances, but rather, to call attention to important parameters that manufacturers should include in their literature, to provide methods for measuring those parameters, and to assign values that are indicative of acceptably good performance. Because of the great variety of demands imposed by spectrochemical techniques, rigid performance criteria are not feasible.1.4 The values stated in SI units are to be regarded as the standard.1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This test method describes the optical emission vacuum spectrometric procedure for examining blast furnace iron (hot metal) containing 4.2 to 5.0 % carbon by the point-to-plane technique. This spectrochemical technique is intended specifically for the analysis of silicon, manganese, phosphorus, titanium, and sulfur in specified concentration ranges in blast furnace iron. Apparatus needed for this procedure shall include sample mold, grinder, supporting electrode, excitation source, spectrometer, and appropriate measuring system. The sample is excited in an inert gas atmosphere by a controlled triggered capacitor discharge using the point-to-plane technique. Using a vacuum spectrometer, the radiant energies of selected analytical lines and an internal standard line are measured by photomultipliers. The output current of each photomultiplier is accumulated and stored during the exposure period as a charge on an associated capacitor, where it appears as a measurable voltage. At the end of the exposure period the voltages corresponding to the analytical lines relative to the voltage for the internal standard line are measured. The measuring system may be calibrated in terms of percent concentration.1.1 This test method describes the spectrochemical procedure for the analysis of blast furnace iron (hot metal) containing 4.2 to 5.0 % carbon for the following elements in the indicated ranges:Elements Concentration Range, %Silicon 0.50 to 2.00Manganese 0.20 to 1.50Phosphorus 0.020 to 0.15Titanium 0.02 to 0.10Sulfur 0.010 to 0.0501.2This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1 Scope This technical report outlines principles which are intended to be used as the basis for determining the requirements for connecting large distorting loads (producing harmonics and/or interharmonics) to public power systems. The primary objecti

定价: 1456元 / 折扣价: 1238

在线阅读 收 藏

1 Scope This technical report outlines principles which are intended to be used as the basis for determining the requirements for connecting large fluctuating loads (producing flicker) to public power systems. The primary objective is to provide guidan

定价: 1274元 / 折扣价: 1083

在线阅读 收 藏

4.1 Leakage of gas or liquid from a pressurized system, whether through a crack, orifice, seal break, or other opening, may involve turbulent or cavitational flow, which generates acoustic energy in both the external atmosphere and the system pressure boundary. Acoustic energy transmitted through the pressure boundary can be detected at a distance by using a suitable acoustic emission sensor.4.2 With proper selection of frequency passband, sensitivity to leak signals can be maximized by eliminating background noise. At low frequencies, generally below 100 kHz, it is possible for a leak to excite mechanical resonances within the structure that may enhance the acoustic signals used to detect leakage.4.3 This practice is not intended to provide a quantitative measure of leak rates.1.1 This practice describes a passive method for detecting and locating the steady state source of gas and liquid leaking out of a pressurized system. The method employs surface-mounted acoustic emission sensors (for non-contact sensors see Test Method E1002), or sensors attached to the system via acoustic waveguides (for additional information, see Terminology E1316), and may be used for continuous in-service monitoring and hydrotest monitoring of piping and pressure vessel systems. High sensitivities may be achieved, although the values obtainable depend on sensor spacing, background noise level, system pressure, and type of leak.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standards.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is useful for the determination of element concentrations in many natural waters. It has the capability for the simultaneous determination of up to 15 separate elements. High analysis sensitivity can be achieved for some elements, such as boron and vanadium.1.1 This test method covers the determination of dissolved and total recoverable elements in water, which includes drinking water, lake water, river water, sea water, snow, and Type II reagent water by direct current plasma atomic emission spectroscopy (DCP).1.2 The information on precision and bias may not apply to other waters.1.3 This test method is applicable to the 15 elements listed in Annex A1 (Table A1.1) and covers the ranges in Table 1.1.4 This test method is not applicable to brines unless the sample matrix can be matched or the sample can be diluted by a factor of 200 up to 500 and still maintain the analyte concentration above the detection limit.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

6.1 The immersion technique is frequently used to locate leaks in sealed containers. Leaks in a container can be seen independently. Leak size can be approximated by the size of the bubble. It is not suitable for measurement of total system leakage.6.2 The liquid film technique is widely applied to components and systems that can not easily be immersed and is used to rapidly locate leaks. An approximation of leak size can be made based on the type of bubbles formed, but the technique is not suitable for measuring leakage rate. It can be used with a vacuum box to test vessels which cannot be pressurized or where only one side is accessible.6.3 Accuracy—This practice is not intended to measure leakage rates, but to locate leaks on a go, no-go basis. Their accuracy for locating leaks of 4.5 × 10 −10 mol/s (1 × 10−4 Std cm3/s)2 and larger is ±5 %. Accuracy for locating smaller leaks depends upon the skill of the operator.6.4 Repeatability—On a go, no-go basis, duplicate tests by the same operator should not vary by more than ±5 % for leaks of 4.5 × 10 −9 mol/s (1 × 10−4 Std cm3/s).26.5 Reproducibility—On a go, no-go basis, duplicate tests by other trained operators should not vary by more than 10 % for leaks of 4.5 × 10 −9 mol/s (1 × 10−4 Std cm3/s)2 and larger.1.1 This practice covers procedures for detecting or locating leaks, or both, by bubble emission techniques. A quantitative measure is not practical. The normal limit of sensitivity for this test method is 4.5 × 10−10 mol/s (1 × 10−5 Std cm3/s).21.2 Two techniques are described:1.2.1 Immersion technique, and1.2.2 Liquid application technique.NOTE 1: Additional information is available in ASME Boiler and Pressure Vessel Code, Section V, Article 10-Leak Testing, and Guide E479.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Used Lubricating Oil—The determination of debris in used oil is a key diagnostic method practiced in machine condition monitoring programs. The presence or increase in concentration of specific wear metals can be indicative of the early stages of wear if there are baseline concentration data for comparison. A marked increase in contaminant elements can be indicative of foreign materials in the lubricants, such as antifreeze or sand, which may lead to wear or lubricant degradation. The test method identifies the metals and their concentration so that trends relative to time or distance can be established and corrective action can be taken prior to more serious or catastrophic failure.1.1 This test method covers the determination of wear metals and contaminants in used lubricating oils and used hydraulic fluids by rotating disc electrode atomic emission spectroscopy (RDE-AES).1.2 This test method provides a quick indication for abnormal wear and the presence of contamination in new or used lubricants and hydraulic fluids.1.3 This test method uses oil-soluble metals for calibration and does not purport to relate quantitatively the values determined as insoluble particles to the dissolved metals. Analytical results are particle size dependent and low results may be obtained for those elements present in used oil samples as large particles.1.4 The test method is capable of detecting and quantifying elements resulting from wear and contamination ranging from dissolved materials to particles approximately 10 μm in size.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5.1 The preferred units are mg/kg (ppm by mass).1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice describes the essential components of the DCP spectrometer. This description allows the user or potential user to gain a basic understanding of this system. It also provides a means of comparing and evaluating this system with similar systems, as well as understanding the capabilities and limitations of each instrument.1.1 This practice describes the components of a direct current plasma (DCP) atomic emission spectrometer. This practice does not attempt to specify component tolerances or performance criteria. This practice does, however, attempt to identify critical factors affecting bias, precision, and sensitivity. Before placing an order a prospective user should consult with the manufacturer to design a testing protocol for demonstrating that the instrument meets all anticipated needs.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are give in Section 9.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This practice describes the photomultiplier properties that are essential to their judicious selection and use of in emission and absorption spectrometry. The properties covered here include structural features, electrical properties, and characteristics involved in precautions and problems. The structural features covered are envelope configurations, window materials, electrical connections, and housing for the external structure, and the photocathode, dynodes and anode, and rigidness of structural components for the internal structure. Electrical properties, on the other hand, incorporate the following: optical-electronic characteristics of the photocathode including spectral response; current amplification including gain per stage, overall gain, gain control (voltage-divider bridge), linearity of response, and anode saturation; signal nature; dark current including cathode size, internal aperture, and refrigeration effects; noise nature including additivity of noise power, signal-to-noise ratio, equivalent noise input; and photomultiplier properties as a component in an electrical circuit including output impedance, response time, and signal gating and integration possibilities. Finally, the characteristics involved in precautions and problems cover fatigue and hysteresis effects, illumination of photocathode, and gas leakage.1.1 This practice covers photomultiplier properties that are essential to their judicious selection and use in emission and absorption spectrometry. Descriptions of these properties can be found in the following sections:  SectionStructural Features 4 General 4.1 External Structure 4.2 Internal Structure 4.3Electrical Properties 5 General 5.1 Optical-Electronic Characteristics of the Photocathode 5.2 Current Amplification 5.3 Signal Nature 5.4 Dark Current 5.5 Noise Nature 5.6 Photomultiplier as a Component in an Electrical Circuit 5.7Precautions and Problems 6 General 6.1 Fatigue and Hysteresis Effects 6.2 Illumination of Photocathode 6.3 Gas Leakage 6.4Recommendations on Important Selection Criteria 71.2 Radiation in the frequency range common to analytical emission and absorption spectrometry is detected by photomultipliers presently to the exclusion of most other transducers. Detection limits, analytical sensitivity, and accuracy depend on the characteristics of these current-amplifying detectors as well as other factors in the system.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method for the chemical analysis of titanium and titanium alloys is primarily intended to test material for compliance with specifications of chemical composition such as those under the jurisdiction of ASTM Committee B10. It may also be used to test compliance with other specifications that are compatible with the test method.5.2 It is assumed that all who use this test method will be trained analysts capable of performing common laboratory procedures skillfully and safely and that the work will be performed in a properly equipped laboratory.5.3 This is a performance-based test method that relies more on the demonstrated quality of the test result than on strict adherence to specific procedural steps. It is expected that laboratories using this test method will prepare their own work instructions. These work instructions will include detailed operating instructions for the specific laboratory, the specific reference materials used, and performance acceptance criteria. It is also expected that, when applicable, each laboratory will participate in proficiency test programs, such as described in Practice E2027, and that the results from the participating laboratory will be satisfactory.1.1 This method describes the analysis of titanium and titanium alloys, such as specified by committee B10, by inductively coupled plasma atomic emission spectrometry (ICP-AES) and direct current plasma atomic emission spectrometry (DCP-AES) for the following elements:Element ApplicationRange (wt.%) QuantitativeRange (wt.%)Aluminum 0–8 0.009 to 8.0Boron 0–0.04 0.0008 to 0.01Cobalt 0-1 0.006 to 0.1Chromium 0–5 0.005 to 4.0Copper 0–0.6 0.004 to 0.5Iron 0–3 0.004 to 3.0Manganese 0–0.04 0.003 to 0.01Molybdenum 0–8 0.004 to 6.0Nickel 0–1 0.001 to 1.0Niobium 0-6 0.008 to 0.1Palladium 0-0.3 0.02 to 0.20Ruthenium 0-0.5 0.004 to 0.10Silicon 0–0.5 0.02 to 0.4Tantalum 0-1 0.01 to 0.10Tin 0–4 0.02 to 3.0Tungsten 0-5 0.01 to 0.10Vanadium 0–15 0.01 to 15.0Yttrium 0–0.04 0.001 to 0.004Zirconium 0–5 0.003 to 4.01.2 This test method has been interlaboratory tested for the elements and ranges specified in the quantitative range part of the table in 1.1. It may be possible to extend this test method to other elements or broader mass fraction ranges as shown in the application range part of the table above provided that test method validation is performed that includes evaluation of method sensitivity, precision, and bias. Additionally, the validation study shall evaluate the acceptability of sample preparation methodology using reference materials or spike recoveries, or both. Guide E2857 provides information on validation of analytical methods for alloy analysis.1.3 Because of the lack of certified reference materials (CRMs) containing bismuth, hafnium, and magnesium, these elements were not included in the scope or the interlaboratory study (ILS). It may be possible to extend the scope of this test method to include these elements provided that method validation includes the evaluation of method sensitivity, precision, and bias during the development of the testing method.1.4 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific safety hazards statements are given in Section 9.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
133 条记录,每页 15 条,当前第 2 / 9 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页