微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This guide covers test procedures for performing accelerated tests to evaluate relative corrosion resistance of various coatings applied to mechanical fasteners. Corrosion mechanisms such as general and crevice corrosion may be evaluated with this method. Test duration may be selected to achieve any desired level of corrosion exposure and provides a frame of reference to determine relative coating resistance to corrosion. Fasteners tightened to a desired tension and subjected to this test procedure may be evaluated to simulate a variety of service conditions. Without large amounts of accumulated field results, it is difficult to relate test duration or the number of test cycles to actual service life for a given application.1.1 This guide covers test procedures for performing accelerated tests to evaluate relative corrosion resistance of various coatings applied to mechanical fasteners. Corrosion mechanisms such as general and crevice corrosion may be evaluated with this method. Test duration may be selected to achieve any desired level of corrosion exposure and provides a frame of reference to determine relative coating resistance to corrosion. Fasteners tightened to a desired tension and subjected to this test procedure may be evaluated to simulate a variety of service conditions. Without large amounts of accumulated field results, it is difficult to relate test duration or the number of test cycles to actual service life for a given application.1.2 This standard is not intended to cover tests of driven fasteners such as nails, staples, screws and lag bolts.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The use of this test method can significantly reduce the risk of sudden catastrophic failure of threaded articles and fasteners, below their design strength, due to hydrogen embrittlement.1.1 This test method covers the determination of, on a statistical basis, the probability of the existence of hydrogen embrittlement or degradation in:1.1.1 A batch of barrel electroplated, autocatalytic plated, phosphated, or chemically processed threaded articles or fasteners and1.1.2 A batch of rack plated threaded articles, fasteners, or rod.1.2 Industrial practice for threaded articles, fasteners, and rod has evolved three graduated levels of test exposure to ensure reduced risk of hydrogen embrittlement (see Section 3). These levels have evolved from commercial applications having varying levels of criticality. In essence, they represent the confidence level that is required. They also represent the time that finished goods are held before they can be shipped and used. This time equates to additional cost to the manufacturer that may of necessity be added to the cost of the finished goods.1.3 This test method is applicable to threaded articles, fasteners, and rod made from steel with ≥1000 MPa (with corresponding hardness values of 300 HV10 kgf, 303 HB, or 31 HRc) or surface hardened threaded articles, fasteners, or rod.1.4 This test method shall be carried out after hydrogen embrittlement relief heat treatment in accordance with the requirements of Guide B850. It may also be used for assessing differences in processing solutions, conditions, and techniques. This test method has two main functions: first, when used with a statistical sampling plan it can be used for lot acceptance or rejection, and second, it can be used as a control test to determine the effectiveness of the various processing steps including pre- and post-baking treatments to reduce the mobile hydrogen in the articles, fasteners, or rod. While this test method is capable of indicating those items that are embrittled to the extent defined in Section 3, it does not guarantee complete freedom from embrittlement.1.5 This test method does not relieve the processor from imposing and monitoring suitable process control.1.6 This test method has been coordinated with ISO/DIS 10587 and is technically equivalent. (Warning—Great care should be taken when applying this test method. The heads of embrittled articles, fasteners, or rod may suddenly break off and become flying projectiles capable of causing blindness or other serious injury. This hazard can occur as long as 200 h after the test has started. Hence, shields or other apparatus should be provided to avoid such injury.)Note 1—Test Method F1940 can be used as a process control and verification to prevent hydrogen embrittlement in fasteners covered by this test method.Note 2—The use of inhibitors in acid pickling baths does not necessarily guarantee avoidance of hydrogen embrittlement.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers the chemical and mechanical requirements for nine property classes (Property Class 4.6, 4.8, 5.8, 8.8, 8.8.3, 9.8, 10.9, 10.9.3, and 12.9) of carbon and alloy steel externally threaded fasteners in nominal thread diameters M1.6 through M100 suited for use in general engineering applications. It does not cover the dimensional requirements for fasteners of any property class. The steel used to manufacture bolts, screws, and studs that are covered here shall be made by the open-hearth, basic-oxygen, or electric-furnace process. The fasteners shall adhere to specified values of elemental chemical compositions, which shall be examined by heat and product analyses. Each property class shall also conform to individually specified values of the following mechanical properties: proof load, wedge and axial tensile strengths, yield strength, elongation, reduction of area, surface hardness, Rockwell hardness, Vickers hardness, and stress area.1.1 This specification covers chemical and mechanical requirements for nine property classes of carbon and alloy steel externally threaded metric fasteners in nominal thread diameters M1.6 through M100 suited for use in general engineering applications. 1.2 This specification does not cover dimensional requirements for fasteners of any property class. When referencing this specification for procurement purposes, it is mandatory that size, type, style, and any special dimensions of the product be additionally specified. 1.2.1 In case of any conflict in requirements, the requirements of the individual product specification shall take precedence over those of this general specification. 1.2.2 The purchaser may specify additional requirements which do not negate any of the provisions of this general specification or of the individual product specification. Such additional requirements, the acceptance of which are subject to negotiation with the supplier, must be included in the order information (see Section 3). 1.3 Requirements for seven of the nine property classes, 4.6, 4.8, 5.8, 8.8, 9.8, 10.9, and 12.9, are essentially identical with requirements given for these classes in ISO 898-1. The other two, 8.8.3 and 10.9.3, are not recognized in ISO standards. 1.4 Classes 8.8.3 and 10.9.3 bolts, screws, and studs have atmospheric corrosion resistance and weathering characteristics comparable to those of the steels covered in Specification A 588/A 588M. The atmospheric corrosion resistance of these steels is substantially better than that of carbon steel with or without copper addition. See 5.2. When properly exposed to the atmosphere, these steels can be used bare (uncoated) for many applications. 1.5 When agreed on by the purchaser, Class 5.8 fasteners may be supplied when either Classes 4.6 or 4.8 are ordered; Class 4.8 may be supplied when Class 4.6 is ordered; Class 8.8.3 may be supplied when Class 8.8 is ordered; and Class 10.9.3 may be supplied when Class 10.9 is ordered. 1.6 The product size range for which each property class is applicable is given in Table 1 and Table 2 on chemical composition requirements, and the mechanical requirements table (see Table 3). 1.7 Appendix X1 gives conversion guidance to assist designers and purchasers in the selection of a suitable property class. 1.8 Appendix X2 explains the significance of the property class designation numerals.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method establishes a means to verify the prevention, to the extent possible, of IHE in steel fasteners during manufacture by maintaining strict controls during production operations such as surface preparation, pretreatments, and plating or coating. It is intended to be used as a qualification test for new or revised plating or coating processes and as a periodic inspection audit for the control of a plating or coating process.5.2 Passing this test allows fasteners to be stressed in tension to the minimum specified tensile load in air with almost no possibility of time delayed fracture in air as a result of IHE from processing. If the amount of residual hydrogen is not sufficient to induce cracking or fracture in the specimen under worst case conditions, then it can be concluded that all of the lots of fasteners processed during that period will not have sufficient residual hydrogen from processing to induce hydrogen embrittlement of the fasteners under stress in air if the process remains in control, unchanged and stable.5.3 If certified specimens with demonstrated sensitivity to IHE, processed with the fasteners, have a threshold ≥75 % of the incremental step load notched bend fracture stress, NFS(B)F1624, it is assumed that all fasteners processed the same way during the period will also pass any sustained load IHE test.FIG. 1 Dimensional Requirements for a 0.4W-Notched Square Bar Bend Specimen1.1 This test method covers a procedure to prevent, to the extent possible, internal hydrogen embrittlement (IHE) of fasteners by monitoring the plating or coating process, such as those described in Specifications F1137 and F1941. The process is quantitatively monitored on a periodic basis with a minimum number of specimens as compared to qualifying each lot of fasteners being plated or coated. Trend analysis is used to ensure quality as compared to statistical sampling analysis of each lot of fasteners. This test method consists of a mechanical test for the evaluation and control of the potential for IHE that may arise from various sources of hydrogen in a plating or coating process.1.2 This test method consists of a mechanical test, conducted on a standard specimen used as a witness, for the evaluation and control of the potential for IHE that may arise from various sources of hydrogen in a plating or coating process.1.3 This test method is limited to evaluating hydrogen induced embrittlement due only to processing (IHE) and not due to environmental exposure (EHE, see Test Method F1624).1.4 This test method is not intended to measure the relative susceptibility of steels to either IHE or EHE.1.5 This test method is limited to evaluating processes used for plating or coating ferrous fasteners.1.6 This test method uses a notched square bar specimen that conforms to Test Method F519, Type 1e, except that the radius is increased to accommodate the deposition of a larger range of platings and coatings. For the background on Test Method F519 testing, see publications ASTM STP 5432 and ASTM STP 962.3 The stress concentration factor is at a Kt = 3.1 ± 0.2. The sensitivity is demonstrated with a constant imposed cathodic potential to control the amount of hydrogen. Both the sensitivity and the baseline for residual hydrogen will be established with tests on bare metal specimens in air.1.7 The sensitivity of each lot of specimens to IHE shall be demonstrated. A specimen made of AISI E4340 steel heat treated to a hardness range of 50 to 52 HRC is used to produce a “worst case” condition and maximize sensitivity to IHE.1.8 The test is an accelerated (≤24 h) test method to measure the threshold for hydrogen stress cracking, and is used to quantify the amount of residual hydrogen in the specimen. The specimen undergoes sustained load and slow strain rate testing by using incremental loads and hold times under displacement control to measure a threshold stress in an accelerated manner in accordance with Test Method F1624.1.9 In this test method, bending is used instead of tension because it produces the maximum local limit load tensile stress in a notched bar of up to 2.3 times the yield strength as measured in accordance with Test Method E8/E8M. A fastener that is unintentionally exposed to bending on installation may attain this maximum local tensile stress.1.10 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers application, performance and dimensional requirements for electrodeposited coatings on threaded fasteners with metric screw threads. It specifies coating thickness, supplementary hexavalent chromate or trivalent chromite finishes, corrosion resistance, precautions for managing the risk of hydrogen embrittlement and hydrogen embrittlement relief for high-strength and surface-hardened fasteners. It also highlights the differences between barrel and rack plating and makes recommendations as to the applicability of each process. The coating material, coating thickness, chromate finish, and trivalent chromite finish shall be selected and designated. The electrodeposited coating shall cover all surfaces and shall meet the following requirements: the coating metal deposit shall be bright or semibright, smooth, fine grained, adherent and uniform in appearance; the coating shall be free of blisters, pits, nodules, roughness, cracks, unplated areas, and other defects that will affect the function of the coating; and the coating shall not be stained, discolored or exhibit any evidence of white or red corrosion products. Slight discoloration that results from baking, drying, or electrode contact during rack-plating, or all of these, as well as slight staining that results from rinsing shall not be cause for rejection. Corrosion resistance and embrittlement of coatings shall be determined by performing mechanical tests.1.1 This specification covers application, performance and dimensional requirements for electrodeposited coatings on threaded fasteners with unified inch and metric screw threads, but it may also be applied to other threaded parts and non-threaded parts such as washers and pins. It specifies coating thickness, supplementary hexavalent chromate or non-hexavalent conversion coatings, corrosion resistance, precautions for managing the risk of hydrogen embrittlement and hydrogen embrittlement relief for high-strength and surface-hardened fasteners. It also highlights the differences between barrel and rack plating and makes recommendations as to the applicability of each process.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 Terms used in this specification are defined in Terminology F1789.1.4 The following precautionary statement pertains to the test method portion only, Section 9, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This terminology covers standard terminology for anchors and fasteners installed in structural members made of concrete or masonry.1.2 This terminology does not cover terms relating to the mechanical properties of the materials used for fabricating anchors, nor does it cover their use.1.3 The terms are listed alphabetically. Compound terms appear in the natural spoken order.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers application, performance and dimensional requirements for electrodeposited coatings on threaded fasteners with metric screw threads. It specifies coating thickness, supplementary hexavalent chromate or trivalent chromite finishes, corrosion resistance, precautions for managing the risk of hydrogen embrittlement and hydrogen embrittlement relief for high-strength and surface-hardened fasteners. It also highlights the differences between barrel and rack plating and makes recommendations as to the applicability of each process. The coating material, coating thickness, chromate finish, and trivalent chromite finish shall be selected and designated. The electrodeposited coating shall cover all surfaces and shall meet the following requirements: the coating metal deposit shall be bright or semibright, smooth, fine grained, adherent and uniform in appearance; the coating shall be free of blisters, pits, nodules, roughness, cracks, unplated areas, and other defects that will affect the function of the coating; and the coating shall not be stained, discolored or exhibit any evidence of white or red corrosion products. Slight discoloration that results from baking, drying, or electrode contact during rack-plating, or all of these, as well as slight staining that results from rinsing shall not be cause for rejection. Corrosion resistance and embrittlement of coatings shall be determined by performing mechanical tests.1.1 This specification covers application, performance and dimensional requirements for electrodeposited coatings on threaded fasteners with metric screw threads. It specifies coating thickness, supplementary hexavalent chromate or trivalent chromite finishes, corrosion resistance, precautions for managing the risk of hydrogen embrittlement and hydrogen embrittlement relief for high-strength and surface-hardened fasteners. It also highlights the differences between barrel and rack plating and makes recommendations as to the applicability of each process.1.2 The following precautionary statement pertains to the test method portion only, Section 9, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers the chemical and mechanical requirements of quenched and tempered alloy steel bolts, studs, and other externally threaded fasteners. All fasteners shall be made from alloy steel conforming to the chemical composition requirements. Two levels of bolting strength are covered, designated Grades BC and BD. Selection will depend upon design and the stresses and service for which the product is to be used. Hardness, tensile strength, yield strength, elongation, and area reduction shall be tested to meet the requirements prescribed.1.1 This specification2 covers the chemical and mechanical requirements of quenched and tempered alloy steel bolts, studs, and other externally threaded fasteners 4 in. and under in diameter for application at normal atmospheric temperatures, where high strength is required and for limited application at elevated temperature (Note 1). Any alloy steel capable of meeting the mechanical and chemical properties set forth in this specification may be used.NOTE 1: For bolts, studs, or other externally threaded fasteners, to be used at elevated temperatures, refer to Specification A193/A193M.1.2 Two strength levels are covered, designated Grades BC and BD. Selection will depend upon design and the stresses and service for which the product is to be used.NOTE 2: Quenched and tempered alloy steel bolts for structural steel joints up through 11/2 in. in diameter are covered in Specification F3125/F3125M. For fastener diameter sizes above 1 1/2 in., Grade BC may be considered for structural steel bolting where tensile strength above 120 ksi is necessary and Grade BD may be considered for structural steel bolting where tensile strength above 150 ksi is necessary. In this event, additional requirements of Specification F3125/F3125M, such as head size, lubricant, and magnetic particle inspection, should be carefully considered.1.3 Nuts are covered in Specification A563. Unless otherwise specified, the grade and style of nut for each grade of fastener shall be as follows: Grade of Fastener and Surface Finish Nut Grade andStyleABC, plain (or with a coating of insufficient thick- ness to require over-tapped nuts)   C, heavy hexBC, zinc-coated (or with a coating thickness re- quiring over-tapped nuts)   DH, heavy hexBD, all finishes  DH, heavy hex1.4 Optional supplementary requirements are provided at the end of this standard.1.5 Terms used in this specification are defined in Terminology F1789 unless otherwise defined herein.1.6 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM F1789-23 Standard Terminology for F16 Mechanical Fasteners Active 发布日期 :  1970-01-01 实施日期 : 

1.1 This terminology standard provides a compilation of definitions for terminology used for mechanical fasteners.1.2 Terms in this terminology are organized alphabetically. In Appendix X1 they are listed under fastener characteristic.1.3 Additional definitions are shown in ANSI/ASME B18.12; IFI Glossary of Terms, IFI-139 and IFI-140; and SAE J412.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification establishes the basic requirements for non-electrolytically applied zinc-flake composite corrosion protective coating systems for fasteners. The requirements apply to appearance, adhesion, corrosion resistance, blisters, thread fit, hydrogen embrittlement, and total coefficient of friction. The coating systems covered by this specification do not contain hexavalent chromium, lead, cadmium, or mercury. This specification is intended for corrosion protection of inch and metric series threaded fasteners as well as for non-threaded fasteners such as washers and pins. This specification also covers test methods, application, inspection, and certification.1.1 This specification covers the basic requirements for non-electrolytically applied zinc-flake composite corrosion protective coating systems for fasteners (See Note 1).NOTE 1: The coating systems do not contain hexavalent chromium, lead, cadmium, or mercury.1.2 This specification is intended for corrosion protection of inch and metric series threaded fasteners with minimum nominal diameters of 0.250 in. for inch series and [6.00 mm] for metric as well as for non-threaded fasteners such as washers and pins.1.3 This coating system may be specified to consist of a zinc-flake basecoat, or a zinc-flake basecoat and topcoat (See Note 2).NOTE 2: For threaded fasteners, the coating system will typically consist of a zinc-flake basecoat and topcoat.1.3.1 The basecoat is a zinc-rich material containing aluminum flakes dispersed in a compatible liquid medium. The zinc-flake basecoat may be specified to contain integral lubricant.1.3.2 Topcoats may be organic or inorganic in composition depending upon the specified requirements.1.3.2.1 Organic topcoats consist of polymer resins, aluminum, dispersed pigments, and are colored in their applied state.1.3.2.2 Inorganic topcoats consist of water-dispersed silicate compounds and are transparent in their applied state.1.3.2.3 Topcoats contain integral lubricants and are applied in conjunction with zinc-flake basecoats to form a coating system with enhanced performance attributes such as increased corrosion resistance, total coefficient of friction properties, chemical resistance, and color.1.4 These zinc-flake basecoats and topcoats are applied by conventional dip-spin, dip-drain, or spray methods to fasteners which can be handled through a cleaning, coating, and curing operation. The maximum curing temperature is 482 °F [250 °C].1.5 The friction properties of the coating system may be determined by a standard test to verify process control or by a part specific test which requires the purchaser to establish and communicate technical criteria.1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

6.1 The resistance of plastic lumber and shapes to direct withdrawal of nails, staples, or screws is a measure of its ability to hold or be held to an adjoining object by means of such fasteners. Factors that affect this withdrawal resistance include the physical and mechanical properties of the plastic lumber and shapes; the size, shape, and surface condition of the fasteners; the speed of withdrawal; physical changes to plastic lumber and shapes or fasteners between time of driving and time of withdrawal; orientation of fiber axis; the occurrence and nature of prebored lead holes; and the temperatures during insertion and withdrawal. These factors will be as circumstances dictate, and representative of the normal manufacturing process.6.2 By using a standard size and type of nail, staple, or screw, withdrawal resistance of plastic lumber and shapes can be determined. Throughout the method this is referred to as the basic withdrawal test. Similarly, comparative performances of different sizes or types of nail, staple, or screw can be determined by using a standard procedure with a particular plastic lumber and shape, which eliminates the plastic lumber and shapes product as a variable. Since differences in test methods can have considerable influence on results, it is important that a standard procedure be specified and adhered to, if test values are to be related to other test results.1.1 These test methods cover the evaluation of fastener use with “as manufactured” plastic lumber and shapes through the use of two different testing procedures.1.2 The test methods appear in the following order:    Sections  Test Method A—Nail, Staple, or Screw Withdrawal Test 4 to 13  Test Method B—Nail, Staple, or Screw Lateral Resistance Test 14 to 221.3 Plastic lumber and plastic shapes are currently made predominately from recycled plastics. However, these test methods would also be applicable to similar manufactured plastic products made from virgin resins where the product is non-homogeneous in the cross-section.1.4 The values stated in inch-pound units are to be regarded as standard. The SI units given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

5.1 This test method provides controlled environments which are utilized to produce corrosion of metal, metal-coated, or nonmetallic-coated smooth or deformed shank driven fasteners in contact with treated wood exposed to the given test environments. The test method provides information that can be used to evaluate the corrosion resistance of metal, metal-coated, or nonmetallic-coated smooth or deformed shank driven fasteners in contact with different chemical wood treatments.5.2 The results shall be used for comparative purposes only and they shall not be correlated to exposure time in natural environments.5.3 The reproducibility of results in these types of tests is highly dependent on the type of samples tested and the evaluation criteria selected, as well as the control of the operating variables.1.1 This test method covers and focuses on the corrosion resistance of metal, metal-coated, and nonmetallic-coated smooth and deformed shank driven fasteners in contact with treated wood in exterior or high moisture exposure applications using comparative tests with control fastener specimens of standardized benchmarks. This test method may be used for preservative-treated wood.1.2 This test method describes the apparatus, procedure, and conditions required to maintain test environments for the Cyclic Fog Test and the Steady State Moisture Test.1.3 This test method describes the types of test samples, lists exposure periods, and gives guidance on interpretation of results.1.4 Until experience is gained comparing laboratory-to-laboratory results with this test method, comparisons of fasteners, coatings, materials, or preservatives shall be made only within the results of the same test.1.5 The values stated in SI units are to be regarded as standard. The values in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method may be used for acceptance testing of commercial shipments of snap fasteners, but caution is advised since information on between laboratory precision is incomplete. Comparative tests as directed in 5.1.1 are advisable.5.1.1 In case of a dispute arising from differences in reported test results when using Test Method D4846 for acceptance testing of commercial shipments, the purchaser and seller should conduct comparative tests to determine if there is statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of material of the type in question. The test specimens then should be assigned randomly in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using Student's t-test for unpaired data and an acceptable probability level chosen by the two parties before testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and seller must agree to interpret future test results in the light of the known bias.1.1 This test method covers the determination of the force required to disengage snap fasteners by a pull perpendicular to and parallel with the plane of the snap fastener.1.2 This test method requires attachment of snaps to specimens using specifications provided by the producers of the snaps.1.3 This test method is used to establish correlation to wear conditions and for comparing different brands and types of snap fasteners.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers externally threaded bolts, studs, and cap screws called fasteners, capable of indicating clamping forces up to yield strength during the tightening process or post installation residual tension, or both. Load-indicating fasteners utilize mechanical, electronic, or ultrasonic means to indicate fastener tension. These fasteners provide a means to verify the desired clamp load in critical applications upon installation and in service. This specification covers the following four different types of load-indicating fasteners: mechanical dial type (MT); electronic type (ET); strain gauge type (ST); and ultrasonic type (UT). Tension test shall be performed to conform to the chemical and mechanical requirements specified.1.1 This specification covers externally threaded bolts, studs, and cap screws, herein called fasteners, capable of indicating clamping forces up to yield strength during the tightening process or post installation residual tension, or both. Load-indicating fasteners utilize a variety of sensor types to indicate fastener tension. This specification outlines the various types of load indication technologies available and defines their performance requirements.1.2 This specification covers fastener diameters 1/4 to 7 in. [M6 to M180] inclusive. Fasteners are manufactured from a variety of material types and grades. All fastener materials shall be defined by a governing engineering standard or specification for strength and performance values (see 6.1). Fasteners governed by this specification shall maintain traceability of material test records throughout the manufacturing process to verify conformance with the applicable fastener standards.1.3 These fasteners provide a means to verify the desired clamp load in critical applications upon installation and in service.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 The following precautionary statement pertains only to the test method portion, Section 11, of the specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
50 条记录,每页 15 条,当前第 3 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页