微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Control over the residue content (required by Specification D1835) is of considerable importance in end-use applications of LPG. In liquid feed systems, residues can lead to troublesome deposits and, in vapor withdrawal systems, residues that are carried over can foul regulating equipment. Residues that remain in vapor-withdrawal systems will accumulate, can be corrosive, and will contaminate subsequent product. Water, particularly if alkaline, can cause failure of regulating equipment and corrosion of metals.5.2 See Appendix X2 for information on the effect of temperature on the measurement of residue in LPG.1.1 This test method covers the determination of extraneous materials weathering above 38 °C that are present in liquefied petroleum gases. The extraneous materials will generally be dissolved in the LPG, but may have phase-separated in some instances.1.2 Liquefied petroleum gases that contain certain anti-icing additives can give erroneous results by this test method.1.3 Although this test method has been used to verify cleanliness and lack of heavy contaminants in propane for many years, it might not be sensitive enough to protect some equipment from operational problems or increased maintenance. A more sensitive test, able to detect lower levels of dissolved contaminants, could be required for some applications.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is suitable for determining the quantity of hydrogen peroxide, organic hydroperoxides, and organic peroxides as total active oxygen in various hydrocarbon streams for both quality control and quality assurance of the product.1.1 This test method covers the determination of trace peroxides in various hydrocarbon streams. A list of typical hydrocarbon streams can be found in Appendix X2.1.2 This test method is applicable to the determination of peroxides in petroleum liquids including, but not limited to, 1,3-butadiene, styrene, methylcyclohexane, and alpha olefins in the range of 0.1 mg/kg to 100 mg/kg active oxygen. The limit of detection (LOD) is 0.03 mg/kg for active oxygen and the limit of quantitation (LOQ) is 0.11 mg/kg active oxygen. The upper limit has been determined by the calibration range.NOTE 1: LOD and LOQ were calculated using data obtained during development of the method.1.3 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The hydrocarbon component distribution of liquefied petroleum gases and propene mixtures is often required for end-use sale of this material. Applications such as chemical feed stocks or fuel require precise compositional data to ensure uniform quality. Trace amounts of some hydrocarbon impurities in these materials can have adverse effects on their use and processing.5.2 The component distribution data of liquefied petroleum gases and propene mixtures can be used to calculate physical properties such as relative density, vapor pressure, and motor octane (see Practice D2598). Precision and accuracy of compositional data are extremely important when these data are used to calculate various properties of these petroleum products.1.1 This test method covers the quantitative determination of individual hydrocarbons in liquefied petroleum (LP) gases and mixtures of propane and propene, excluding high-purity propene in the range of C1 to C5. Component concentrations are determined in the range of 0.01 % to 100 % by volume.1.2 This test method does not fully determine hydrocarbons heavier than C5 and non-hydrocarbon materials, and additional tests may be necessary to fully characterize an LPG sample.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4.1 The user is advised to obtain LPG safety training for the safe operation of this test method procedure and related activities.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

2.1 Rubber hose has an inherent characteristic of permitting diffusion of a gas through the hose structure. This test method quantitatively measures the loss of liquefied petroleum gas.1.1 This test method covers the determination of the volume of liquefied petroleum gas diffusing through the wall of a hose during a specified period of time.1.2 The values stated in SI units are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. A specific precautionary statement is given in the warning in Section 5.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 LPG samples can change composition during storage and use from preferential vaporization of lighter (lower molecular weight) hydrocarbon components, dissolved inert gases (N2, Ar, He, and so forth) and other dissolved gases/liquids (NH3, CO2, H2S, H2O, etc.). Careful selection of cylinder type, cylinder volume, and use of inert gas for pressurizing cylinders is required to ensure that composition changes are small enough to maintain the integrity of LPG when used as a QC reference material for various LPG test methods.5.2 Monitoring of ongoing precision and bias on QC materials using control chart techniques in accordance with Practice D6299 can be used to establish the need for calibration or maintenance.1.1 This practice covers information for the storage and use of LPG samples in standard cylinders of the type used in sampling method, Practice D1265 and floating piston cylinders used in sampling method, Practice D3700.1.2 This practice is especially applicable when the LPG sample is used as a quality control (QC) reference material for LPG test methods, such as gas chromatography (GC) analysis (Test Method D2163) or vapor pressure (Test Method D6897) that use only a few mL per test, since relatively small portable Department of Transportation (DOT) cylinders (for example, 20 lb common barbecue cylinders, or common Mower/Forklift cylinders) can be used.1.2.1 Modification of the pressure relief (QCC1) valve on single access port cylinders may prohibit the collection or transport of cylinders outside of permitted facilities such as refineries, gas plants or pipeline stations. No modification is generally required for multi-port mower/forklift cylinders that have a separate access port for pressure relief and additional access ports for filling, liquid/vapor withdrawal or liquid level indication. Consult the Authority having Jurisdiction for detailed regional regulatory requirements for transport of LPG in pressurized cylinders.1.3 This practice can be applied to other test methods. However, test methods that require a large amount of sample per test (for example, manual vapor pressure Test Method D1267) will require QC volumes in excess of 1000 L if stored in standard DOT cylinders or American Society of Mechanical Engineers (ASME) vessels.1.3.1 Test methods for trace materials that may be sensitive to vessel surfaces (for example H2O, H2S/sulfur, or trace residues) could preferably use aluminum, stainless steel or internally coated vessels to minimize surface absorption/reaction or larger vessels to minimize surface/volume ratio.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The composition of liquefied gaseous fuels (LNG, LPG) is important for custody transfer and production. Compositional determination is used to calculate the heating value, and it is important to ensure regulatory compliance. Compositional determination is also used to optimize the efficiency of liquefied hydrocarbon gas production and ensure the quality of the processed fluids.5.2 Alternatives to compositional measurement using Raman spectroscopy are described in Test Method D1945, Practice D1946, and Test Method D7833.5.3 The advantage of this practice over other standards stated in 5.2, is that Raman spectroscopy can determine composition by directly measuring the liquefied natural gas. Unlike chromatography, no vaporization step is necessary. Since incorrect operation of on-line vaporizers can lead to poor precision and accuracy, elimination of the vaporization step offers a significant improvement in the analysis of LNG.1.1 This practice is for both on-line and laboratory instrument-based determination of composition for liquefied natural gas (LNG) using Raman spectroscopy. Although the procedures in this practice refer specifically to liquids, the basic methodology can also be applied to other light hydrocarbon mixtures in either liquid or gaseous states, provided the data quality objectives and measurement needs are met. From the composition, gas properties such as heating value and the Wobbe index may be calculated. The components commonly determined according to this test method are CH4, C2H6, C3H8, i-C4H10, n-C4H10, iC5H12, n-C5H12. Components heavier than C5 are not measured as part of this practice.NOTE 1: Raman spectroscopy does not directly quantify the component percentages of noble gases; however, inert substances can be calculated indirectly by subtracting the sum of the other species from 100 %.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Vapor pressure is an important specification property of commercial propane, special duty propane, propane/butane mixtures, and commercial butane that assures adequate vaporization, safety, and compatibility with commercial appliances. Relative density, while not a specification criterion, is necessary for determination of filling densities and custody transfer. The motor octane number (MON) is useful in determining the products' suitability as a fuel for internal combustion engines.1.1 This practice covers, by compositional analysis, the approximate determination of the following physical characteristics of commercial propane, special-duty propane, commercial propane/butane mixtures, and commercial butane (covered by Specification D1835): vapor pressure, relative density, and motor octane number (MON).1.1.1 This practice is not applicable to any product exceeding specifications for nonvolatile residues. (See Test Method D2158.)1.1.2 For calculating motor octane number, this practice is applicable only to mixtures containing 20 % or less of propene.1.1.3 For calculated motor octane number, this practice is based on mixtures containing only components shown in Table 1.1.2 The values stated in SI units are to be regarded as standard.1.2.1 Exceptions: 1.2.1.1 Non-SI units in parentheses are given for information only.1.2.1.2 Motor octane number and relative density are given in MON numbers and dimensionless units, respectively.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 High water concentrations can have a detrimental effect on the many uses of liquefied petroleum gas (LPG). Wet butane, propane, and other low molecular weight hydrocarbon products can cause operational issues in customer equipment and downstream processes. Water can cause corrosion problems and create safety hazards during the storage, distribution and use of liquefied petroleum gas (LPG) and pressurized low molecular weight hydrocarbon samples.5.2 While the dryness of propane may be monitored with a “functional” test such as the valve freeze Test Method D2713, this test method provides an analytical method to directly measure water content in LPG and pressurized low molecular weight hydrocarbons and their mixtures.1.1 This test method describes the use of a specialized liquefied gas sampler coupled to a coulometric Karl Fischer (KF) titrator for the determination of water in liquid butane with water concentrations from 1 mg/kg to 100 mg/kg.NOTE 1: Other liquefied petroleum gases described in Specification D1835 including propane, propene (propylene), butylenes and mixtures of these materials and other light hydrocarbons, and dimethyl ether described in Specification D7901, can be analyzed by this method but the precision has not been studied and therefore the stated precision has not been validated for these materials.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 10 for specific warning statements.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Information on the vapor pressures of liquefied petroleum gas is pertinent to selection of properly designed storage vessels, shipping containers, and customer utilization equipment to ensure safe handling of these products.5.2 Determination of the vapor pressure of liquefied petroleum gas is important for safety reasons to ensure that the maximum operating design pressures of storage, handling, and fuel systems will not be exceeded under normal operating temperature conditions.5.3 For liquefied petroleum gases, vapor pressure can be considered a semi-quantitative measure of the amount of the most volatile material present in the product.5.4 This test method uses a small sample volume and excludes any manual handling of a measuring chamber under high pressure.1.1 This test method covers the use of automatic vapor pressure instruments to determine the vapor pressure of liquefied petroleum gas products at a temperature of 37.8 °C, vapor to liquid ratio of 0.5:1, and pressures from 200 kPa to 1550 kPa on a sample volume of 3.33 mL.1.2 This test method is applicable to the determination of vapor pressures of liquefied petroleum gas products at temperatures from 37.8 °C to 70 °C, vapor to liquid ratios of 0.1:1 to 4:1, and pressures up to 3500 kPa; however, the precision of the test method (see Section 15) has only been determined for a vapor to liquid ratio of 0.5:1, at a temperature of 37.8 °C, and a pressure range from 300 kPa to 1500 kPa.NOTE 1: This test method is not intended to determine the true vapor pressure of LPG samples, but rather determine and report the vapor pressure of LPG at the 37.8 °C temperature and 0.5:1 vapor to liquid ratio as the Test Method D1267 method.NOTE 2: This test method is not a true vapor pressure method and will not measure the full contribution from any dissolved gases such as nitrogen or helium if they are present. The contribution of light gases to the measured vapor pressure is highly dependent on the test temperature, type of gas, and V/L ratio of the test.1.3 The values stated in SI units are to be regarded as standard.1.3.1 Exception—Non-SI units are included in parentheses for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Appendix X2.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D1835-22 Standard Specification for Liquefied Petroleum (LP) Gases Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers liquefied petroleum gases consisting of propane, propene (propylene), butane, and mixtures of these materials. The products are intended for use as domestic, commercial and industrial heating, and engine fuels. Care must be taken to in sampling of the liquefied gases for test results to be significant. All four types of liquefied petroleum gases covered by this specification should conform to the specified requirements for vapor pressure, volatile residue, residue matter, relative density, and corrosion.1.1 This specification covers those products commonly referred to as liquefied petroleum gases, consisting of propane, propene (propylene), butane, and mixtures of these materials. Four basic types of liquefied petroleum gases are provided to cover the common use applications.1.2 This specification is applicable to products intended for use as domestic, commercial and industrial heating, and engine fuels.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3.1 The non-SI unit ‘psig’ is the standard unit for footnote C of Table 1 because that unit of measurement is widely used in North American industry.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D1837-17 Standard Test Method for Volatility of Liquefied Petroleum (LP) Gases (Withdrawn 2017) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

4.1 Volatility, expressed in terms of the 95 % evaporated temperature of the product, is a measure of the amount of least volatile components present in the product. Coupled with a vapor pressure limit, it serves to ensure essentially single-component products in the cases of commercial grades of propane and butane. When volatility is coupled with a vapor pressure limit which has been related to density, as in the case of the commercial PB-mixture, the combination serves to assure essentially two component mixtures for such fuels. When coupled with a proper vapor pressure limit, this measurement serves to assure that special-duty propane products will be composed chiefly of propane and propylene and that propane will be the major constituent.1.1 This test method is a measure of the relative purity of the various types of liquefied petroleum (LP) gases and helps to ensure suitable volatility performance. The test results, when properly related to vapor pressure and density of the product, can be used to indicate the presence of butane and heavier components in propane-type LP-gas, and pentane and heavier components in propane-butane and butane-type fuels. The presence of hydrocarbon compounds less volatile than those of which the LP-gas is primarily composed is indicated by an increase in the 95 % evaporated temperature.1.2 When the type and concentration of higher boiling components is required, chromatographic analysis should be used.1.3 The values stated in SI units are to be regarded as the standard.1.3.1 Exception—The non-SI values are provided for information only.1.4 WARNING—Mercury has been designated by many regulatory agencies as a hazardous material that can cause central nervous system, kidney and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable product Safety Data Sheet (SDS) for details and EPA’s website—http://www.epa.gov/mercury/faq.htm—for additional information. Users should be aware that selling mercury and/or mercury containing products into your state or country may be prohibited by law.1.4.1 Note that thallium in a mercury-thallium thermometer is also a hazardous material.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers LNG density calculation models for use in the calculation or prediction of the densities of saturated liquefied natural gas (LNG) mixtures at a specified temperature range given the pressure, temperature, and composition of the mixture. Composition restrictions for the LNGs are given for methane, nitrogen, n-butane, i-butane, and pentanes. It is assumed that hydrocarbons with carbon numbers of six or greater are not present in the LNG solution. The mathematical models presented here are the extended corresponding states model, hard sphere model, revised Klosek and McKinley model, and the cell model.1.1 This specification covers Liquefied Natural Gas (LNG) density calculation models for use in the calculation or prediction of the densities of saturated LNG mixtures from 90K to 120K to within 0.1 % of true values given the pressure, temperature, and composition of the mixture.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Copper corrosion limits provide assurance that difficulties will not be experienced in deterioration of the copper and copper-alloy fittings and connections that are commonly used in many types of utilization, storage, and transportation equipment.1.1 This test method covers the detection of the presence of components in liquefied petroleum gases which can be corrosive to copper.NOTE 1: For an equivalent copper strip test applicable to less volatile petroleum products, see Test Method D130.1.2 The values stated in SI units are to be regarded as standard.1.2.1 Exception—The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.1, 10.3.1, and Annex A1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice provides guidance on the minimum requirements for the design, manufacture, installation, and operation of bunker hose transfer assemblies for cryogenic service pertaining to bunkering of LNG-fueled vessels. The bunker hose transfer assemblies addressed by this practice are for connections between the LNG-fueled vessel bunker manifold presentation flange connections and the LNG supplier bunkering manifold presentation flange connections.1.1 This practice covers the minimum requirements for the design, manufacturing, and deployment of bunker hose transfer assemblies for cryogenic service pertaining to bunkering of liquefied natural gas (LNG)-fueled vessels. The bunker hose transfer assemblies addressed by this practice are for connections between the LNG-fueled vessel bunker manifold presentation flange connections and the LNG supplier bunkering manifold presentation flange connections.1.2 Transfer assemblies are suitable for use in multiple maritime bunkering applications, including but not limited to facilities, vessels, trucks, and other LNG bunkering supply services. This practice will directly address the hose assembly, dry quick disconnect couplings (DQD), breakaway couplings,