微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 78元 / 折扣价: 67 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 Liquefied petroleum gases and their products of combustion must not be unduly corrosive to the materials with which they come in contact. The potential personnel exposure hazards of H2S also make the detection and measurement of hydrogen sulfide important, even in low concentrations. In addition, in some cases the odor of the gases shall not be objectionable. (See Specification D1835 and GPA 2140.)1.1 This test method2 covers the detection of hydrogen sulfide in liquefied petroleum (LP) gases. The sensitivity of the test is about 4 mg/m3 (0.15 to 0.2 grain of hydrogen sulfide per 100 ft3) of gas.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The moisture content of LPG can be critical to the use, transportation, or processing of LPG products, especially at cold ambient temperatures and during pressure throttling, when icing or hydrate formation, or both, are most likely to occur. In order to prevent ice or hydrate formation, or both, the water content has to be low enough to prevent the formation of free water in storage tanks and/or regulators over the entire range of operating conditions (temperatures, pressures, and compositions) encountered during normal service. For example, propane and propane-propene mixtures require moisture levels below the equilibrium saturation level of water at operating temperature and pressure for these hydrocarbons to meet specifications such as Specification D1835.5.2 The presence of free water in a propane system can lead to ice or hydrate accumulation, the blockage of vapor or liquid fuel lines, and disrupt the operation of pumps, meters, filters, valves, regulators, safety shut-off valves, and other equipment.5.3 This test method allows continuous monitoring of process flow streams and could be applied to monitoring of product dryness during transportation operations if it is known that methanol has not been added.1.1 This test method covers the quantitative determination of water in liquefied petroleum gases (LPG) from 1 mg/kg to 250 mg/kg using an online electronic moisture analyzer, also known as an electronic hygrometer or dew point analyzer, in the absence of methanol or other anti-freeze agent.1.1.1 These analyzers commonly use sensing cells based on aluminum oxide, Al2O3, silicone, phosphorus pentoxide, P2O5, piezoelectric-type cells, or laser-based technologies to measure the dew point temperature of LPG.1.1.2 Knowledge of the hydrocarbon composition of the LPG is required to calculate the water content on a mass basis from the dew point temperature of an LPG sample.1.1.3 The LPG shall be free of alcohol (sometimes added as an anti-freeze agent) as it can interfere with the electronic moisture analyzer. Thus the method will be most useful in a process facility where it is known that no methanol has been added to the LPG product.1.2 The values stated in SI units are to be regarded as standard.1.2.1 There is an exception in Appendix X1, where the unit “mbar” is used in data provided by an external source, and parts per million by weight (ppm by weight) is widely used in industry.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Residue in LPG is a contaminant that can lead to operational problems in some end use applications. Engines, micro-turbines, fuel cells and other equipment may be sensitive to residue levels as low as 10 mg/kg.5.2 Contamination of LPG can occur during production, transport, delivery, storage and use. A qualitative indication of the contaminants can help track down the source of the contamination from manufacture, through the distribution system, and to the end user.5.3 This test method is designed to provide a lower detection limit, wider dynamic range, and better accuracy than gravimetric methods like Test Method D2158.5.4 This test method can be performed with little or no discharge of LPG vapors, compared to Test Method D2158 which requires evaporation of 100 mL of sample per test.5.5 Sampling for residue in LPG using sorbent tubes can be performed in the field, and the sorbent tubes sent to a laboratory for analysis. This saves significant costs in shipping (weight of tube is approximately 10 grams), and is much safer and easier than transporting LPG cylinders.5.6 This test method determines total residues from C6 to C40, compared to a thermal gravimetric residue method such as Test Method D2158 which heat the residue to 38°C, resulting in a lower recovery due to loss of lighter residue components.5.7 If there is a need to decrease the detection limit of residue or individual compounds of interest below 10 µg/g, the procedures in this test method can be modified to achieve 50 times enhanced detection limit, or 0.2 µg/g.1.1 This test method covers the determination of residue in LPG by automated thermal desorption/gas chromatography (ATD/GC) using flame ionization detection (FID).1.2 The quantitation of residue covers a component boiling point range from 69°C to 522°C, equivalent to the boiling points of C6 through C40 n-paraffins.1.2.1 The boiling range covers possible LPG contaminants such as gasoline, diesel fuel, phthalates and compressor oil. Qualitative information on the nature of the residue can be obtained from this test method.1.2.2 Materials insoluble in LPG and components which do not elute from the gas chromatograph or which have no response in a flame ionization detector are not determined.1.2.3 The reporting limit (or limit of quantitation) for total residue is 6.7 µg/g.1.2.4 The dynamic range of residue quantitation is 6.7 to 3300 µg/g.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Samples of liquefied petroleum gases are examined by various test methods to determine physical and chemical characteristics and conformance with specifications.5.2 Equipment described by this practice may be suitable for transportation of LPG samples, subject to applicable transportation regulations.1.1 This practice covers equipment and procedures for obtaining a representative sample of specification Liquefied Petroleum Gas (LPG), such as specified in Specification D1835, GPA 2140, and comparable international standards. This standard is applicable to flow-through cylinders with two valves and is not applicable to single valve cylinders or larger LPG sample containers such as those utilized for barbecue grills and/or forklift cylinders.1.2 This practice is suitable for obtaining representative samples for all routine tests for LP gases required by Specification D1835. In the event of a dispute involving sample integrity when sampling for testing against Specification D1835 requirements, Practice D3700 shall be used as the referee sampling procedure.1.3 This practice may also be used for other Natural Gas Liquid (NGL) products that are normally highly volatile, single phase materials (NGL mix, natural gasoline, field butane, etc.), defined in other industry specifications or contractual agreements, where use of open sample containers would risk the loss of volatile components. It is not intended for non-specification products that contain significant quantities of undissolved gases (N2, CO2), free water or other separated phases, such as raw or unprocessed gas/liquids mixtures and related materials. The same equipment can be used for these purposes, but additional precautions are generally needed to obtain representative samples of multiphase products (see Appendix X1 on Sampling Guidelines in Practice D3700).NOTE 1: Practice D3700 describes a recommended practice for obtaining a representative sample of a light hydrocarbon fluid and the subsequent preparation of that sample for laboratory analysis when dissolved gases are present. Use of Practice D1265 will result in a small but predictable low bias for dissolved gases due to the liquid venting procedure to establish the 20 % minimum ullage.1.4 This practice includes recommendations for the location of a sample point in a line or vessel. It is the responsibility of the user to ensure that the sampling point is located so as to obtain a representative sample.1.5 The values stated in SI units are to be regarded as standard.1.5.1 Exception—Non-SI units are shown in parentheses for information only.1.6  This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 78元 / 折扣价: 67 加购物车

在线阅读 收 藏

5.1 Information on the vapor pressures of liquefied petroleum gas products under temperature conditions from 37.8 °C to 70 °C (100 °F to 158 °F) is pertinent to selection of properly designed storage vessels, shipping containers, and customer utilization equipment to ensure safe handling of these products.5.2 Determination of the vapor pressure of liquefied petroleum gas is important for safety reasons to ensure that the maximum operating design pressures of storage, handling, and fuel systems will not be exceeded under normal operating temperature conditions.5.3 For liquefied petroleum gases, vapor pressure can be considered a semi-quantitative measure of the amount of the most volatile material present in the product, and this can give an indication of low temperature operability.1.1 This test method covers the determination of the gauge vapor pressures of liquefied petroleum gas products at temperatures of 37.8 °C (100 °F) up to and including a test temperature of 70 °C (158 °F). (Warning—Extremely flammable gas. May be harmful when inhaled.)NOTE 1: An alternative method for measurement of vapor pressure of liquefied petroleum gases is Test Method D6897.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 1.1 and Annex A2.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 78元 / 折扣价: 67 加购物车

在线阅读 收 藏
33 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页