微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers zinc-coated parallel and helical steel wire structural strands for use where a high-strength, high-modulus, multiple-wire tension member is desired as a component part of a structure. Breaking strength is expressed as Grade 1 or 2, while, coating weight is expressed as Class A, B, or C. Strands shall be furnished with Class A weight zinc-coated wires throughout, but may be furnished with Class B or C weight wires as well where additional corrosion protection is required. The base metal shall be carbon steel manufactured by the open-hearth, basic-oxygen, or electric-furnace process Finished strands and the hard-drawn individual zinc-coated wires shall be coated by the hot-dip or electrolytic process. Specimens shall be tested and conform to values of the following physical requirements: nominal diameter, stress at specified extension under load, tensile strength, total elongation, ductility, and coating weight and adherence.1.1 This specification covers metallic-coated steel wire structural strand, for use where a high-strength, high-modulus, multiple-wire tension member is desired as a component part of a structure. The strand is available with parallel or helical wire construction.1.1.1 The strand is available with several metallic coating classes and with two strength grades, as described in Section 4.1.2 The strand is furnished with Class A weight zinc or zinc-aluminum alloy-coated wires throughout. It can be furnished with Class B weight or Class C weight zinc-coated outer wires as an option.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The parameters KEAC or KIEAC determined by this test method characterize the resistance to crack growth of a material with a sharp crack in specific environments under loading conditions in which the crack-tip plastic region is small compared with the crack depth and the uncracked ligament. The less restrictive thickness requirements of KEAC are intended for those conditions in which the results are a strong function of the thickness of the specimen and the application requires the testing of specimens with thickness representative of the application. Since the chemical and mechanical influences cannot be separated, in some material/environment combinations, the thickness must be treated as a variable. A KEAC or KIEAC value is believed to represent a characteristic measurement of environment-assisted cracking resistance in a precracked specimen exposed to an environment under sustained tensile loading. A KEAC or KIEAC value may be used to estimate the relationship between failure stress and defect size for a material under any service condition, where the combination of crack-like defects, sustained tensile loading and the same specific environment would be expected to occur. (Background information concerning the development of this test method can be found in Refs (3-18). 5.1.1 The apparent KEAC or KIEAC of a material under a given set of chemical and electrochemical environmental conditions is a function of the test duration. It is difficult to furnish a rigorous and scientific proof for the existence of a threshold (4, 5). Therefore, application of KEAC or KIEAC data in the design of service components should be made with awareness of the uncertainty inherent in the concept of a true threshold for environment-assisted cracking in metallic materials (6, 18). A measured KEAC or KIEAC value for a particular combination of material and environment may, in fact, represent an acceptably low rate of crack growth rather than an absolute upper limit for crack stability. Care should be exercised when service times are substantially longer than test times. 5.1.2 The degree to which force deviations from static tensile stress will influence the apparent KEAC or KIEAC of a material is largely unknown. Small-amplitude cyclic loading, well below that needed to produce fatigue crack growth, superimposed on sustained tensile loading was observed to significantly lower the apparent threshold for stress corrosion cracking in certain instances (7, 8). Therefore, caution should be used in applying KEAC or KIEAC data to service situations involving cyclic loading. In addition, since this standard is for static loading, small-amplitude cyclic loading should be avoided during testing. 5.1.3 In some material/environment combinations, the smaller the specimen, the lower the measured KEAC value, while in other material/environment combinations the measured KIEAC value will be the lowest value (5, 9, 10, 11, 12). If, for the material/environment combination of interest, it is not known which specimen size will result in the lower measured value, then it is suggested that the use of both specimen sizes should be considered; that is, specimens with thicknesses representative of the application and specimens in which the thickness meets the requirements (see 7.2.1) of a KIEAC value. 5.1.3.1 The user may optionally determine and report a KEAC value or a KIEAC value. The specimen size validity requirements for a KEAC value meet the size requirements developed for Test Method E647 to achieve predominately elastic behavior in the specimen. Test Method E647 size requirements for compact specimens should be applied to both the compact specimen and the beam specimen. The specimen size validity requirements for a KIEAC value meet the size requirements developed for plane strain conditions for Test Method E399. 5.1.4 Evidence of environment-assisted crack growth under conditions that do not meet the validity requirements of 7.2 may provide an important indication of susceptibility to environmental cracking but cannot be used to determine a valid KEAC value (14). 5.1.5 Environment-assisted cracking is influenced by both mechanical and electrochemical driving forces. The latter can vary with crack depth, opening, or shape and may not be uniquely described by the fracture mechanics stress intensity factor. As an illustrative example, note the strong decrease reported in KISCC5 with decreasing crack size below 5 mm for steels in 3 % NaCl in water solution (15) . Geometry effects on K similitude should be experimentally assessed for specific material/environment systems. Application modeling based on KEAC similitude should be conducted with caution when substantial differences in crack and specimen geometry exist between the specimen and the component. 5.1.6 Not all combinations of material and environment will result in environment-assisted cracking. In general, susceptibility to aqueous stress-corrosion cracking decreases with decreasing material strength level. When a material in a certain environment is not susceptible to environment-assisted cracking, it will not be possible to measure KEAC or KIEAC. This method can serve the following purposes: 5.1.6.1 In research and development, valid KEAC or KIEAC data can quantitatively establish the effects of metallurgical and environmental variables on the environment-assisted cracking resistance of materials. 5.1.6.2 In service evaluation, valid KEAC or KIEAC data can be utilized to establish the suitability of a material for an application with specific stress, flaw size, and environmental conditions. 5.1.6.3 In acceptance and quality control specifications, valid KEAC or KIEAC data can be used to establish criteria for material processing and component inspection. 5.1.7 Test results will be affected by force relaxation in constant displacement bolt-loaded compact specimens for some material/environment conditions. For relatively low strength material, non-agressive environments, or high test temperatures, force relaxation can occur independently from environment-assisted cracking. Significant force relaxation would make cracking results difficult to interpret. If force relaxation is suspected of influencing the data, the following trial specimen test is recommended. Test a trial specimen with all the test conditions of interest, except with no environment applied. Monitor the force on the sample using a bolt with an electronic load cell attached. Instrumented bolts of this type are commercially available. A force relaxation of more than 5 % after 24 h indicates that the constant displacement test method may not be suitable for these test conditions, and a constant force test should be considered. 5.1.8 Residual stresses can have an influence on environment-assisted cracking. The effect can be significant when test specimens are removed from material in which complete stress relief is impractical, such as weldments, as-heat-treated materials, complex wrought parts, and parts with intentionally produced residual stresses. Residual stresses superimposed on the applied stress can cause the local crack-tip stress-intensity factor to be different from that calculated from externally applied forces or displacements. Irregular crack growth during precracking, such as excessive crack front curvature or out-of-plane crack growth, often indicates that residual stresses will affect the subsequent environment-assisted crack growth behavior. Changes in the zero-force value of crack-mouth-opening displacement as a result of precrack growth is another indication that residual stresses will affect the subsequent environment-assisted crack growth. 5.1.9 For bolt loaded specimens, the user should realize that material being tested at an non-ambient temperature may have a different displacement-to-force ratio from that at ambient temperature, and also the bolt material may have a different coefficient of thermal expansion from that of the material being tested. Care should be taken to minimize these effects. 1.1 This test method covers the determination of the environment-assisted cracking threshold stress intensity factor parameters, KIEAC and KEAC, for metallic materials from constant-force testing of fatigue precracked beam or compact fracture specimens and from constant-displacement testing of fatigue precracked bolt-load compact fracture specimens. 1.2 This test method is applicable to environment-assisted cracking in aqueous or other aggressive environments. 1.3 Materials that can be tested by this test method are not limited by thickness or by strength as long as specimens are of sufficient thickness and planar size to meet the size requirements of this test method. 1.4 A range of specimen sizes with proportional planar dimensions is provided, but size may be variable and adjusted for yield strength and applied force. Specimen thickness is a variable independent of planar size. 1.5 Specimen configurations other than those contained in this test method may be used, provided that well-established stress intensity calibrations are available and that specimen dimensions are of sufficient size to meet the size requirements of this test method during testing. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is suitable for determination of the total amount of extractable residue in metallic medical components. Extractable residue includes aqueous and non-aqueous residue, as well as non-soluble residue.5.2 This test method recommends the use of a sonication technique to extract residue from the medical component. Other techniques, such as solvent reflux extraction, could be used but have been shown to be less efficient in some tests, as discussed in X1.2.5.3 This test method is not applicable for evaluating the extractable residue for the reuse of a single-use component (SUD).1.1 This test method covers the quantitative assessment of the amount of residue obtained from metallic medical components when extracted with aqueous or organic solvents.1.2 This test method does not advocate an acceptable level of cleanliness. It identifies two techniques to quantify extractable residue on metallic medical components. In addition, it is recognized that this test method may not be the only method to determine and quantify extractables.1.3 Although these methods may give the investigator a means to compare the relative levels of component cleanliness, it is recognized that some forms of component residue may not be accounted for by these methods.1.4 The applicability of these general gravimetric methods have been demonstrated by many literature reports; however, the specific suitability for applications to all-metal medical components will be validated by an Interlaboratory Study (ILS) conducted according to Practice E691.1.5 This test method is not intended to evaluate the residue level in medical components that have been cleaned for reuse. This test method is also not intended to extract residue for use in biocompatibility testing.NOTE 1: For extraction of samples intended for the biological evaluation of devices or materials, refer to ISO 10993–12.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard may involve hazardous or environmentally-restricted materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 The objective of surface treatments as documented in this practice is to improve the corrosion resistance of metallic surgical implants including, but not limited to, those manufactured from iron, cobalt, nickel, titanium, and tantalum base materials.3.2 Iron particles, ceramic media, and other foreign particles may become smeared over or embedded into the surface of implants during processing operations such as forming, machining, tumbling, media blasting, marking, and so forth. These particles should be removed to minimize localized corrosion and superficial blemishes.3.3 The various chemical and electrochemical surface treatments specified by this practice are used to remove objectionable surface contaminants and to restore maximum corrosion resistance to, or promote the creation of, an inert or passive surface, such as a metal oxide film, as is applicable to the specific material. Some of these treatments are referred to as passivation treatments. The preferred surface treatment for a given application varies depending on the implant material and the nature of the surface contaminants.3.4 Depending on the implant, its material, and the type of marking method and procedure, the marking may be applied before or after a chemical or electrochemical surface treatment. When marking is performed after the surface treatment, the localized implant surface shall be evaluated to determine if there is a need for additional surface treatment.NOTE 1: The need for additional surface treatment is likely for stainless steel with all marking methods, and for nonferrous alloys when the marking method involves direct or second-hand contact with iron-based or other material that would be considered an objectionable surface contaminant.3.5 The selection of procedures to be applied to the implants, and additional requirements which are not covered by this practice, may be included in the implant production specification.1.1 This practice provides descriptions of surface characteristics, surface preparation, and marking for metallic surgical implants, with the purpose of improving the corrosion resistance of the implant surfaces and markings.1.2 Marking nomenclature and neutralization of endotoxin are not specified in this practice (see X1.4).1.3 Surface requirements and marking methods included in the implant specification shall take precedence over requirements listed in this practice, where appropriate.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended for application in the semiconductor industry for evaluating the purity of materials (for example, sputtering targets, evaporation sources) used in thin film metallization processes. This test method may be useful in additional applications, not envisioned by the responsible technical committee, as agreed upon by the parties concerned.5.2 This test method is intended for use by GDMS analysts in various laboratories for unifying the protocol and parameters for determining trace impurities in pure aluminum. The objective is to improve laboratory to laboratory agreement of analysis data. This test method is also directed to the users of GDMS analyses as an aid to understanding the determination method, and the significance and reliability of reported GDMS data.5.3 For most metallic species the detection limit for routine analysis is on the order of 0.01 weight ppm. With special precautions detection limits to sub-ppb levels are possible.5.4 This test method may be used as a referee method for producers and users of electronic-grade aluminum materials.1.1 This test method covers measuring the concentrations of trace metallic impurities in high purity aluminum.1.2 This test method pertains to analysis by magnetic-sector glow discharge mass spectrometer (GDMS).1.3 The aluminum matrix must be 99.9 weight % (3N-grade) pure, or purer, with respect to metallic impurities. There must be no major alloy constituent, for example, silicon or copper, greater than 1000 weight ppm in concentration.1.4 This test method does not include all the information needed to complete GDMS analyses. Sophisticated computer-controlled laboratory equipment skillfully used by an experienced operator is required to achieve the required sensitivity. This test method does cover the particular factors (for example, specimen preparation, setting of relative sensitivity factors, determination of sensitivity limits, etc.) known by the responsible technical committee to affect the reliability of high purity aluminum analyses.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This test method covers testing the soft tissue fixation strength of metallic staples used in internal fixation of the musculoskeletal system. This test method may be used with physiologic soft tissue and bone or synthetic substitutes for either, or both. This test method may also be used when testing in an aqueous or physiological solution. 1.2 The values stated in SI units are to be regarded as the standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This practice can be used to describe the effects of materials, manufacturing, and design variables on the fatigue resistance of metallic stemmed femoral components subjected to cyclic loading for relatively large numbers of cycles. The recommended test assumes a worst case situation in which proximal support for the stem has been lost. It is also recognized that, for some materials, the environment has an effect on the response to cyclic loading (see 12.7). The test environment used and rationale for the choice of that environment should be described in the test report.It is recognized that actual in vivo loading conditions are not constant amplitude. However, sufficient information is not available to create standard load spectrums for metallic stemmed femoral components. A simple periodic constant amplitude force is accordingly recommended.1.1 This practice covers a method for the fatigue testing of metallic stemmed femoral components used in hip arthroplasty. The described method is intended to be used for evaluation in comparisons of various designs and materials used for stemmed femoral components used in the arthroplasty. This practice covers procedures for the performance of fatigue tests using (as a forcing function) a periodic constant amplitude force.1.2 This practice applies primarily to one-piece prostheses and femoral stems with modular heads, with the head in place. Such prostheses should not have an anterior-posterior A-P bow or a medial-lateral M-L bow, and they should have a nearly straight section on the distal 50 mm of the stem. This practice may require modifications to accommodate other femoral stem designs.1.3 The values stated in SI units are to be regarded as the standard.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 These test methods are intended to evaluate the ability of the HVAC duct system and its supporting construction to do the following:5.1.1 Resist the effects of a standardized fire exposure, and5.1.2 Retain its integrity.5.2 These test methods provide for the following measurements and evaluations where applicable:5.2.1 Ability of the tested support system to carry the load of the HVAC duct and its fire-resistive material(s) during the entire duration of the standardized fire-engulfment test.5.2.2 Ability of the firestops to meet the requirements of Test Method E814 when used as part of a HVAC duct system.5.2.3 Ability of the HVAC duct system to resist the passage of flames and hot gases onto its unexposed surface during a standardized fire-resistance test.5.2.4 Transmission of heat through the HVAC duct system during a standardized fire-resistance test.5.2.5 Ability of the firestop to resist the passage of water during a standardized hose stream test.5.3 These test methods do not provide the following:5.3.1 Full information as to performance of the fire-resistive material, supporting construction, or the HVAC duct system constructed with components, densities, or dimensions other than those tested.5.3.2 Evaluation of the degree by which the fire-resistive material or HVAC duct system contributes to the fire hazard by generation of toxic gases, or other products of combustion.5.3.3 Measurement of the degree of control or limitation of the passage of smoke or products of combustion through the HVAC duct system.5.4 The test specimens are subjected to one or more specific tests under laboratory conditions. When different test conditions are substituted or the end-use conditions are changed, it is not always possible by, or from, these test methods to predict changes to the characteristics measured. Therefore, the results of these laboratory tests are valid only for the exposure conditions described in these test methods.5.5 These test methods require a test specimen to be exposed to a standard fire that is controlled to achieve specified temperatures throughout a specified time period. The engulfment test is followed by the application of a standardized hose stream test. These test methods provide a relative measure of the fire-test-response of comparable fire-resistive materials and HVAC duct systems under these exposure conditions. The fire exposure is not representative of all fire conditions because conditions vary with changes in the amount, nature and distribution of fire loading, ventilation, compartment size and configuration, and heat sink characteristics of the compartment. Variation from the test conditions or test specimen construction, such as size, materials, method of assembly, also affects the fire-test-response. For these reasons, evaluation of the variation is required for application to construction in the field.NOTE 4: When the size of the HVAC duct exceeds the capability of the test furnace to test it, the authority having jurisdiction (AHJ) should be consulted to determine what test and evaluation of the variation is required for application to construction in the field.NOTE 1: Use of the standard designation ISO 6944 refers to both ISO 6944:1985 and ISO 6944-1:2008.1.1 These test methods evaluate the fire-resistive metallic HVAC duct system’s fire resistance and fire-engulfment with horizontal and vertical through-penetration firestops.NOTE 2: The intent of these test methods is to provide authorities having jurisdiction a means to evaluate the fire performance of HVAC duct systems to enable their application and use.1.2 These test methods evaluate the fire performance of HVAC ducts, including both supply (pressurized: Condition A – Horizontal and Condition B – Vertical) and return (exhaust: Condition C – Horizontal and Condition D – Vertical).1.3 These test methods evaluate the ability of a HVAC duct system to resist the spread of fire from one compartment to other compartments separated by a fire resistance rated construction when the HVAC duct system is exposed to fire under one or more of the following conditions:1.3.1 Condition A—Fire exposure from the outside of the horizontal HVAC duct system without openings,1.3.2 Condition B—Fire exposure from the outside of the vertical HVAC duct system without openings,1.3.3 Condition C—Fire exposure from the outside with hot gases entering the inside of the horizontal HVAC duct system with unprotected openings,NOTE 3: Unprotected openings are openings that are not protected by fire dampers.1.3.4 Condition D—Fire exposure from the outside with hot gases entering the inside of the vertical HVAC duct system with unprotected openings.1.4 These test methods provide a means for determining the fire-resistance of vertical and horizontal HVAC duct systems, when subjected to the standard time-temperature curve of Test Methods E119.1.4.1 Condition A—These test methods provide a means for evaluating a horizontal HVAC duct system, without openings exposed to fire, passing through a vertical fire-separating element.1.4.2 Condition B—These test methods provide a means for evaluating a vertical HVAC duct system, without openings exposed to fire and outfitted with a horizontal connection, passing through a horizontal fire-separating element.1.4.3 Condition C—These test methods provide a means for evaluating a horizontal HVAC duct system, with unprotected openings exposed to fire, passing through a vertical fire-separating element.1.4.4 Condition D—These test methods provide a means for evaluating a vertical HVAC duct system with a horizontal connection, and with unprotected openings exposed to fire, passing through a horizontal fire-separating element.1.5 These test methods prescribe a standardized fire exposure for comparing the test results of the fire resistive materials and HVAC duct systems. The results of these tests are one factor in assessing predicted fire performance of HVAC duct systems. Using these test results to predict the performance of actual HVAC duct systems requires the evaluation of test conditions.1.6 The values stated in inch-pound units are to be regarded as the standard. The SI values given in parentheses are for information only, unless the SI units are used consistently to perform all of the test methods referenced herein. In this case, the SI units will be regarded as the standard and will be used in Section 13, Report.1.7 The text of these test methods references notes and footnotes which provide explanatory material and (excluding those in tables and figures) shall not be considered as requirements of the fire-test-response standard.1.8 This document specifically excludes evaluating ducts that carry combustibles, flammable vapors, combustible gases, and commercial kitchen ventilation systems commonly called grease ducts or hazardous exhaust ducts, which are tested in compliance with Test Methods E2336.1.9 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

This specification covers the materials, dimensional tolerances, constructions, and mechanical properties for standard metallic implantable strands and cables. Materials shall be manufactured using equivalent size wires in the cold-worked and stress-relieved or annealed condition. Standard strand constructions shall be 1×3, 1×7, and 1×19 strand. Cabling constructions shall be 7×7 and 7×19 cable. Mechanical requirements include ultimate tensile strength and minimum breaking force. Strand or cable shall have no welds or splices, free of imperfections, and shall conform to dimensions, surface finish, and tolerances indicated in this specification.1.1 This specification covers the materials, dimensional tolerances, constructions, and mechanical properties for standard metallic implantable strands and cables.1.2 This specification is intended to assist in the development of specific strand and cable specifications. It is particularly appropriate for high load bearing applications. It is not intended however, to address all of the possible variations in construction, material, or properties.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The present trend in environmental testing of materials with electrically conductive surfaces is to produce, under accelerated laboratory conditions, corrosion and film-forming reactions that are similar to those that cause failures in service environments. In many of these procedures the parts under test are exposed for days or weeks to controlled quantities of both water vapor and pollutant gases, which may be present in extremely dilute concentrations.NOTE 2: Descriptions of such tests can be found in Practice B827.4.2 Many of these environmental test methods require monitoring of the conditions within the chamber during the test in order to confirm that the intended environmentally related reactions are actually taking place. The most common type of monitor consists of copper, silver, or other thin metallic coupons of a few square centimeters that are placed within the test chamber and that react with the corrosive environment in much the same way as the significant surfaces of the parts under test.4.3 In practice, a minimum number of control coupons are placed in each specified location (see Test Method B810) within the chamber for a specified exposure time, depending upon the severity of the test environment. At the end of this time interval, the metal samples are removed and analyzed by the coulometric reduction procedure.4.4 Other corrosion film evaluation techniques for metallic coupons are also available. The most common of these is mass gain, which is nondestructive to the surface films, but is limited to the determination of the total amount of additional mass acquired by the metal as a result of the environmental attack. The most common is weighing using high performance microbalances or for purposes of real-time monitoring, quartz crystal microbalances (see Specification B808).NOTE 3: Detailed instructions for conducting such weighings, as well as coupon cleaning and surface preparation procedures, are included as part of Test Method B810.NOTE 4: Some surface analytical techniques (such as X-ray methods) can provide nondestructive identification of some compounds in the films, but such methods, for example, X-ray diffraction, can miss amorphous compounds and compounds present in quantities less than 5 % of the tarnish film volume.4.5 With the coulometric technique, it is possible to resolve the complex total film into a number of individual components (Fig. 1) so that comparisons can be made. This resolving power provides a fingerprint capability for identifying significant deviations from intended test conditions, and a comparison of the corrosive characteristics of different environmental chambers and of different test runs within the same chamber.4.6 The coulometric reduction procedure can also be used in test development and in the evaluation of test samples that have been exposed at industrial or other application environments (7). However, for outdoor exposures, some constraints may have to be put on the amount and type of corrosion products allowed, particularly those involving moisture condensation and the possible loss of films due to flaking (also see 4.9 and 8.3.2).4.7 In laboratory environmental testing, the coulometric-reduction procedure is of greatest utility after repeated characterizations of a given corrosive environment have been made to establish a characteristic reduction curve for that environment. These multiple runs should come from both the use of multiple specimens within a given test exposure as well as from several consecutive test runs with the same test conditions.4.8 The coulometric-reduction procedure is destructive in that the tarnish films are transformed during the electrochemical reduction process. Nondestructive evaluation methods, such as mass gain, can be carried out with the same samples that are to be tested coulometrically. However, such procedures must precede coulometric reduction.4.9 The conditions specified in this test method are intended primarily for tarnish films whose total nominal thickness is of the order of 102 to 103 nm (103 to 104 Å). Environmentally produced films that are much thicker than 103 nm are often poorly adherent and are more likely to undergo loosening or flaking upon placement in the electrolyte solution.1.1 This test method covers procedures and equipment for determining the relative buildup of corrosion and tarnish films (including oxides) on metal surfaces by the constant-current coulometric technique, also known as the cathodic reduction method.1.2 This test method is designed primarily to determine the relative quantities of tarnish films on control coupons that result from gaseous environmental tests, particularly when the latter are used for testing components or systems containing electrical contacts used in customer product environments.1.3 This test method may also be used to evaluate test samples that have been exposed to indoor industrial locations or other specific application environments. (See 4.6 for limitations.)1.4 This test method has been demonstrated to be applicable particularly to copper and silver test samples (see (1)).2 Other metals require further study to prove their applicability within the scope of this test method.1.5 The values stated in SI units are the preferred units. The values provided in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 A coating/lining is applied to a metallic substrate to prevent corrosion or reduce product contamination, or both. The degree of coating continuity required is dictated by service conditions. Discontinuities in a coating/lining are frequently very minute and may not be readily visible. This practice provides a procedure for electrical detection of discontinuities in nonconductive coating systems.4.2 Electrical testing to determine the presence and number of discontinuities in a coating/lining is performed on a nonconductive coating/lining applied to an electrically conductive surface. The allowable number of discontinuities should be determined prior to conducting this test since the acceptable quantity of discontinuities will vary depending on film thickness, design, and service conditions.4.3 The low voltage wet sponge test equipment is generally used for detecting discontinuities in coatings/linings having a total thickness of 0.5 mm (20 mil) or less. High voltage spark test equipment is generally used for detecting discontinuities in coatings/linings having a total thickness of greater than 0.5 mm (20 mil).4.3.1 Coatings/linings less than 0.5 mm (20 mil) in thickness may be susceptible to damage if tested with high voltage spark testing equipment. However, coatings/linings greater than 0.25 mm (10 mil) and less than 0.5 mm (20 mil) may be tested with high voltage spark test equipment provided the voltage is calculated and set correctly, and the coating manufacturer approves its use.4.4 To prevent damage to a coating film when using high voltage test instrumentation, total film thickness and dielectric strength in a coating system shall be considered in determining the appropriate voltage for detection of discontinuities. Atmospheric conditions shall also be considered since the voltage required for the spark to gap a given distance in air varies with the conductivity of the air at the time the test is conducted. Table X1.1 in Appendix X1 contains suggested voltages for high voltage spark testing of low dielectric strength coatings/linings.4.5 The coating manufacturer shall be consulted to obtain the following information that can affect the accuracy of this test to determine discontinuities:4.5.1 Establish the length of time required to adequately dry or cure the applied coating/lining prior to testing. Solvents retained in an uncured coating/lining may form an electrically conductive path through the film to the substrate and may be a fire hazard.4.5.2 Determine whether the coating/lining contains electrically conductive fillers or pigments that may affect the normal dielectric properties.4.6 This practice is intended for use with new coatings/linings applied to metal substrates. Its use on a lining previously exposed to an immersion condition has often resulted in damage to the lining and has produced erroneous detection of discontinuities due to permeation or moisture absorption of the lining. Deposits may also be present on the surface causing telegraphing (current traveling through a moisture path to a discontinuity, giving an erroneous indication) or current leakage across the surface of the coating/lining due to contamination. The use of a high voltage tester on previously exposed coatings/linings must be carefully considered because of possible spark-through that will damage an otherwise sound coating/lining. Although a low voltage tester can be used without damaging the coating/lining, it may also produce erroneous results.1.1 This practice covers procedures for determining discontinuities using two types of test equipment:1.1.1 Test Method A—Low Voltage Wet Sponge, and1.1.2 Test Method B—High Voltage Spark Testers.1.2 This practice addresses metallic substrates. For concrete surfaces, refer to Practice D4787.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

2.1 These tests are useful for production control and for acceptance testing of products.2.2 Interpreting the results of qualitative methods for determining the adhesion of metallic coatings is often a controversial subject. If more than one test is used, failure to pass any one test is considered unsatisfactory. In many instances, the end use of the coated article or its method of fabrication will suggest the technique that best represents functional requirements. For example, an article that is to be subsequently formed would suggest a draw or a bend test; an article that is to be soldered or otherwise exposed to heat would suggest a heat-quench test. If a part requires baking or heat treating after plating, adhesion tests should be carried out after such posttreatment as well.2.3 Several of the tests are limited to specific types of coatings, thickness ranges, ductility, or compositions of the substrate. These limitations are noted generally in the test descriptions and are summarized in Table 1 for certain metallic coatings.(A) + Appropriate; − not appropriate.2.4 “Perfect” adhesion exists if the bonding between the coating and the substrate is greater than the cohesive strength of either. Such adhesion is usually obtained if good electroplating practices are followed.2.5 For many purposes, the adhesion test has the objective of detecting any adhesion less than “perfect.” For such a test, one uses any means available to attempt to separate the coating from the substrate. This may be prying, hammering, bending, beating, heating, sawing, grinding, pulling, scribing, chiseling, or a combination of such treatments. If the coating peels, flakes, or lifts from the substrate, the adhesion is less than perfect.2.6 If evaluation of adhesion is required, it may be desirable to use one or more of the following tests. These tests have varying degrees of severity; and one might serve to distinguish between satisfactory and unsatisfactory adhesion in a specific application. The choice for each situation must be determined.2.7 When this guideline is used for acceptance inspection, the method or methods to be used must be specified. Because the results of tests in cases of marginal adhesion are subject to interpretation, agreement shall be reached on what is acceptable.2.8 If the size and shape of the item to be tested precludes use of the designated test, equivalent test panels may be appropriate. If permitted, test panels shall be of the same material and have the same surface finish as the item to be tested and shall be processed through the same preplating, electroplating, and postplating cycle as the parts they represent.1.1 This practice covers simple, qualitative tests for evaluating the adhesion of metallic coatings on various substances.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method covers the testing of stainless steel, cobalt-based, and titanium-based bone screws for the determination of torsional yield strength, maximum torque, breaking angle, and torque versus angle of rotation. The described test method is intended to be used as a means of evaluating the mechanical properties of bone screws.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers zinc-coated steel structural wire rope, prestretched or nonprestretched for use where a high-strength, relatively flexible prefabricated zinc-coated multiple-wire tension member is desired as a component part of a structure. The wire rope is furnished with Class A weight zinc-coated wires throughout. It can be furnished with Class B weight or Class C weight zinc-coated outer wires or Class B weight or Class C weight zinc-coated wires throughout where additional corrosion protection is required. The steel shall conform to the following tensile requirements: tensile strength; bend-free or kink-free test specimens; stress at extension under load; elongation; ductility; weight of zinc coating; adherence of coating; and finish. The weight of the zinc coating shall be determined by a stripping test made on the individual wires prior to fabrication of strand. When specified, the wire rope shall be prestretched. The prestretched rope shall meet the required minimum modulus of elasticity.1.1 This specification covers metallic-coated steel structural wire rope, prestretched or nonprestretched for use where a high-strength, relatively flexible prefabricated metallic-coated multiple-wire tension member is desired as a component part of a structure.1.2 The wire rope is furnished with Class A weight zinc or zinc-aluminum alloy-coated wires throughout. It can be furnished with Class B weight or Class C weight zinc-coated outer wires or Class B weight or Class C weight zinc-coated wires throughout as an option.1.3 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This standard is a compilation of terminology related to metallic coatings used in the steel industry, and to the steel on which the coatings are applied. Terms that are generally understood or adequately defined in other readily available sources are not included.1.2 When a term is used in an ASTM document for which Committee A05 is responsible it is included herein only when judged, after review by Subcommittee A05.18, to be a generally usable term.1.3 Definitions that are identical to those published by other ASTM committees or other standards organizations are identified with the ASTM standard designation (for example, Terminology B374) or with the abbreviation of the name of the organization.1.4 A definition is a single sentence with additional information included in notes. The year the definition was adopted, or the year of latest revision, is appended. The responsible subcommittee reviews the definition for each term at five-year intervals, and prepares revisions as needed.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
210 条记录,每页 15 条,当前第 14 / 14 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页