微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

6.1 Test Method A is frequently used to test large systems and complex piping installations that can be filled with a trace gas. Helium is normally used. The test method is used to locate leaks but cannot be used to quantify except for approximation. Care must be taken to provide sufficient ventilation to prevent increasing the helium background at the test site. Results are limited by the helium background and the percentage of the leaking trace gas captured by the probe.6.2 Test Method B is used to increase the concentration of trace gas coming through the leak by capturing it within an enclosure until the signal above the helium background can be detected. By introducing a calibrated leak into the same volume for a recorded time interval, leak rates can be measured.1.1 This practice covers procedures for testing and locating the sources of gas leaking at the rate of 1 × 10 −7 Pa m3/s (1 × 10−8 Std cm3/s)3 or greater. The test may be conducted on any device or component across which a pressure differential of helium or other suitable tracer gas may be created, and on which the effluent side of the leak to be tested is accessible for probing with the mass spectrometer sampling probe.1.2 Two test methods are described:1.2.1 Test Method A—Direct probing, and1.2.2 Test Method B—Accumulation.1.3 Units—The values stated in either SI or std-cc/sec units are to be regarded separately as standard. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Turbidity is undesirable in drinking water, plant effluent waters, water for food and beverage processing, and for a large number of other water-dependent manufacturing processes. Removal is often accomplished by coagulation, settling, and filtration. Measurement of turbidity provides a rapid means of process control for when, how, and to what extent the water must be treated to meet specifications.5.2 This test method is suitable to turbidity such as that found in drinking water, process water, and high purity industrial water.5.3 When reporting the measured result, appropriate units should also be reported. The units are reflective of the technology used to generate the result, and if necessary, provide more adequate comparison to historical data sets.5.3.1 Table 1 describes technologies and reporting results (see also Refs (1-3)).6 Those technologies listed are appropriate for the range of measurement prescribed in this test method. Others may come available in the future. Fig. X5.1 provides a flow chart to aid in selection of the appropriate technology for low-level static turbidity applications.5.3.2 If a design that falls outside of the criteria listed in Table 1 is used, the turbidity should be reported in turbidity units (TU) with a subscripted wavelength value to characterize the light source that was used.1.1 This test method covers the static determination of turbidity in water (see 4.1).1.2 This test method is applicable to the measurement of turbidities under 5.0 nephelometric turbidity units (NTU).1.3 This test method was tested on municipal drinking water, ultra-pure water, and low turbidity samples. It is the users responsibility to ensure the validity of this test method for waters of untested matrices.1.4 This test method uses calibration standards are defined in NTU values, but other assigned turbidity units are assumed to be equivalent.1.5 This test method assigns traceable reporting units to the type of respective technology that was used to perform the measurement. Units are numerically equivalent with respect to the calibration standard. For example, a 1.0 NTU formazin standard is also equal to a 1.0 FNU standard, a 1.0 FNRU standard, and so forth.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to the MSDSs for all chemicals used in this test method.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This standard is intended as a guideline for the justification of oil test selection for monitoring plain bearing conditions. One should employ a continuous benchmarking against similar applications to ensure lessons learned are continuously being implemented.5.2 Selection of oil tests for the purpose of detecting plain bearing failure modes requires good understanding of equipment design, operating requirements, and surrounding conditions. Specifically, detailed knowledge is required of bearing design configuration, dimensional tolerances, load directions, design limitations, lubrication mechanisms, lubricant characteristics, and metallurgy of lubricated surfaces. Equipment criticality and accessibility as well as application of other monitoring techniques (for example, vibration, ultrasound, or thermal images) are also critical information in this analysis process. In addition, detailed knowledge of the lubricating oil is paramount.5.3 To properly apply the FMEA methodology, users must understand the changes encountered in the system during all operating modes, their impact on design functions, and available monitoring techniques capable of detecting these changes. To demonstrate this approach, Section 6 will provide extensive descriptions of the plain bearing failure modes, their causes, and effects.1.1 This guide covers an oil test selection process for plain bearing applications by applying the principles of Failure Mode and Effect Analysis (FMEA) as described in Guide D7874.1.2 This guide approaches oil analysis from a failure standpoint and includes both the bearing wear and fluid deterioration.1.3 This guide pertains to improving equipment reliability, reducing maintenance costs, and enhancing the condition-based maintenance program primarily for industrial machinery by applying analytical methodology to an oil analysis program for the purpose of determining the detection capability of specific failure modes.1.4 This guide reinforces the requirements for appropriate assembly and operation within the original design envelope, as well as the need for condition-based and time-based maintenance.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice describes a weathering box test fixture and establishes limits for the heat loss coefficients. Uniform exposure guidelines are provided to minimize the variables encountered during outdoor exposure testing.4.2 Since the combination of elevated temperature and solar radiation may cause some solar collector cover materials to degrade more rapidly than either exposure alone, a weathering box that elevates the temperature of the cover materials is used.4.3 This practice may be used to assist in the evaluation of solar collector cover materials in the stagnation mode. No single temperature or procedure can duplicate the range of temperatures and environmental conditions to which cover materials may be exposed during stagnation conditions. To assist in evaluation of solar collector cover materials in the operational mode, Practice E782 should be used. Insufficient data exist to obtain exact correlation between the behavior of materials exposed in accordance with this practice and actual in-service performance.4.4 This practice may also be useful in comparing the performance of different materials at one site or the performance of the same material at different sites, or both.4.5 Means of evaluating the effects of weathering are provided in Practice E765, and in other ASTM test methods that evaluate material properties.4.6 Exposures of the type described in this practice may be used to evaluate the stability of solar collector cover materials when exposed outdoors to the varied influences that comprise weather. Exposure conditions are complex and changeable. Important factors are material temperature, climate, time of year, presence of industrial pollution, etc. Generally, because it is difficult to define or measure precisely the factors influencing degradation due to weathering, results of outdoor exposure tests must be taken as indicative only. Repeated exposure testing at different seasons over a period of more than one year is required to confirm exposure tests at any one location. Control samples must always be used in weathering tests for comparative analysis.1.1 This practice covers a procedure for the exposure of solar collector cover materials to the natural weather environment at elevated temperatures that approximate stagnation conditions in solar collectors having a combined back and edge loss coefficient of less than 1.5 W/(m2·°C).1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials.1.3 This practice does not apply to cover materials for evacuated collectors, photovoltaic cells, flat-plate collectors having a combined back and edge loss coefficient greater than 1.5 W/(m2·°C), or flat-plate collectors whose design incorporates means for limiting temperatures during stagnation.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1 Scope This part of IEC 61000 relates to the immunity requirements and test methods for electrical and electronic equipment to conducted, common mode disturbances in the range d.c. to 150 kHz. The object of this standard is to establish a common and r

定价: 865元 / 折扣价: 736

在线阅读 收 藏

5.1 Test Method A—This test method is the most frequently used in leak testing components. Testing of components is correlated to a standard leak, and the actual leak rate is measured. Acceptance is based on the maximum system allowable leakage. For most production needs, acceptance is based on acceptance of parts leaking less than an established leakage rate, which will ensure safe performance over the projected life of the component. Care must be exercised to ensure that large systems are calibrated with the standard leak located at a representative place on the test volume. As the volume tends to be large (>1 m3) and there are often low conductance paths involved, a check of the response time as well as system sensitivity should be made.5.2 Test Method B—This test method is used for testing vacuum systems either as a step in the final test of a new system or as a maintenance practice on equipment used for manufacturing, environmental test, or conditioning parts. As with Test Method A, the response time and a system sensitivity check may be required for large volumes.5.3 Test Method C—This test method is to be used only when there is no convenient method of connecting the LD to the outlet of the high-vacuum pump. If a helium LD is used and the high-vacuum pump is an ion pump or cryopump, leak testing is best accomplished during the roughing cycle, as these pumps leave a relatively high percentage of helium in the high-vacuum chamber. This will limit the maximum sensitivity that can be obtained.1.1 This practice covers procedures for testing the sources of gas leaking at the rate of 1 × 10 −8 Pa m3/s (1 × 10−9 standard-cm3/s at 0 °C) or greater. These test methods may be conducted on any object that can be evacuated and to the other side of which helium or other tracer gas may be applied. The object must be structurally capable of being evacuated to pressures of 0.1 Pa (approximately 10−3 torr).1.2 Three test methods are described;1.2.1 Test Method A—For the object under test capable of being evacuated, but having no inherent pumping capability.1.2.2 Test Method B—For the object under test with integral pumping capability.1.2.3 Test Method C—For the object under test as in Test Method B, in which the vacuum pumps of the object under test replace those normally used in the leak detector (LD).1.3 Units—The values stated in either SI or std-cc/sec units are to be regarded separately as standard. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Susceptibility to delamination is one of the major weaknesses of many advanced laminated composite structures. Knowledge of a laminated composite material's resistance to interlaminar fracture under fatigue loads is useful for product development and material selection. Furthermore, a measurement of the relationship of the mode I cyclic strain energy release rate and the number of cycles to delamination growth onset, G–N, that is independent of specimen geometry or method of load introduction, is useful for establishing design allowables used in damage tolerance analyses of composite structures made from these materials. 5.2 This test method can serve the following purposes: 5.2.1 To establish quantitatively the effects of fiber surface treatment, local variations in fiber volume fraction, and processing and environmental variables on G–N of a particular composite material. 5.2.2 To compare quantitatively the relative values of G–N for composite materials with different constituents. 5.2.3 To develop criteria for avoiding the onset of delamination growth under fatigue loading for composite damage tolerance and durability analyses. 1.1 This test method determines the number of cycles (N) for the onset of delamination growth based on the opening mode I cyclic strain energy release rate (G), using the Double Cantilever Beam (DCB) specimen shown in Fig. 1. This test method applies to constant amplitude, tension-tension fatigue loading of continuous fiber-reinforced composite materials. When this test method is applied to multiple specimens at various G-levels, the results may be shown as a G–N curve, as illustrated in Fig. 2. FIG. 1  DCB Specimen with Piano Hinges FIG. 2  G–N Curve 1.2 This test method is limited to use with composites consisting of unidirectional carbon fiber tape laminates with single-phase polymer matrices. This limited scope reflects the experience gained in round robin testing. This test method may prove useful for other types and classes of composite materials, however, certain interferences have been noted (see Section 6.5 of Test Method D5528). 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3.1 Exception—The values provided in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Information technology - Protocol for providing the OSI connectionless-mode transport service AMENDMENT 1: Addition of connectionless mode multicast capability

定价: 182元 / 折扣价: 155

在线阅读 收 藏

This test method is intended primarily to differentiate between liquid thin film lubricants which exhibit the properties of Newtonian flow with respect to their endurance (wear) life and load carrying capacity when they are used in a manner similar to the bonded dry solid film lubricants. (See Test Method D 2625 for definition of dry solid film lubricants.) The test conditions for thin film lubricants are very critical and must be maintained to ensure reliability of the data when used to compare different lubricants.Liquid thin film lubricants which exhibit the properties of non-Newtonian flow can also be tested if the procedure for preparing the pin and vee blocks is modified to account for their different behavior.1.1 This test method covers the determination of the endurance (wear) life and load carrying capacity of thin film fluid lubricants that are intended to operate after a single application and after excess material has drained from the contact area of sliding metal to metal surfaces, and which operates in what functionally is a drain and dry mode with no additional lubricant being applied.1.2 The values stated in SI units are to be regarded as the standard except where equipment is supplied using inch-pound units which would then be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Susceptibility to delamination is one of the major weaknesses of many advanced laminated composite structures. Knowledge of the interlaminar fracture resistance of composites is useful for product development and material selection. Since delaminations can be subjected to and extended by loadings with a wide range of mode mixtures, it is important that the composite toughness be measured at various mode mixtures. The toughness contour, in which fracture toughness is plotted as a function of mode mixtures (see Fig. 3), is useful for establishing failure criterion used in damage tolerance analyses of composite structures made from these materials.FIG. 3 Mixed-Mode Summary Graph5.2 This test method can serve the following purposes:5.2.1 To establish quantitatively the effects of fiber surface treatment, local variations in fiber volume fraction, and processing and environmental variables on Gc of a particular composite material at various mode mixtures,5.2.2 To compare quantitatively the relative values of Gc versus mode mixture for composite materials with different constituents, and5.2.3 To develop delamination failure criteria for composite damage tolerance and durability analyses.5.3 This method can be used to determine the following delamination toughness values:5.3.1 Delamination Initiation—Two values of delamination initiation shall be reported: (1) at the point of deviation from linearity in the load-displacement curve (NL) and (2) at the point at which the compliance has increased by 5 % or the load has reached a maximum value (5%/max) depending on which occurs first along the load deflection curve (see Fig. 4). Each definition of delamination initiation is associated with its own value of Gc and GII/G calculated from the load at the corresponding critical point. The 5%/Max Gc value is typically the most reproducible of the three Gc values. The NL value is, however, the more conservative number. When the option of collecting propagation values is taken (see 5.3.2), a third initiation value may be reported at the point at which the delamination is first visually observed to grow on the edge of the specimen. The VIS point often falls between the NL and the 5%/Max points.FIG. 4 Load-Displacement Curves5.3.2 Propagation Option—In the MMB test, the delamination will grow from the insert in either a stable or an unstable manner depending on the mode mixture being tested. As an option, propagation toughness values may be collected when delaminations grow in a stable manner. Propagation toughness values are not attainable when the delamination grows in an unstable manner. Propagation toughness values may be heavily influenced by fiber bridging which is an artifact of the zero-degree-type test specimen (3-5). Since they are often believed to be artificial, propagation values must be clearly marked as such when they are reported. One use of propagation values is to check for problems with the delamination insert. Normally, delamination toughness values rise from the initiation values as the delamination propagates and fiber bridging develops. When toughness values decrease as the delamination grows, a poor delamination insert is often the cause. The delamination may be too thick or deformed in such a way that a resin pocket forms at the end of the insert. For accurate initiation values, a properly implanted and inspected delamination insert is critical (see 8.2).5.3.3 Precracked Toughness—Under rare circumstances, toughness may decrease from the initiation values as the delamination propagates (see 5.3.2). If this occurs, the delamination should be checked to ensure that it complies with the insert recommendations found in 8.2. Only after verifying that the decreasing toughness was not due to a poor insert, should precracking be considered as an option. With precracking, a delamination is first extended from the insert in Mode I, Mode II, or mixed mode. The specimen is then reloaded at the desired mode mixture to obtain a toughness value.1.1 This test method covers the determination of interlaminar fracture toughness, Gc, of continuous fiber-reinforced composite materials at various Mode I to Mode II loading ratios using the Mixed-Mode Bending (MMB) Test.1.2 This test method is limited to use with composites consisting of unidirectional carbon fiber tape laminates with brittle and tough single-phase polymer matrices. This test method is further limited to the determination of fracture toughness as it initiates from a delamination insert. This limited scope reflects the experience gained in round robin testing. This test method may prove useful for other types of toughness values and for other classes of composite materials; however, certain interferences have been noted (see Section 6). This test method has been successfully used to test the toughness of both glass fiber composites and adhesive joints.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This practice provides a procedure for operating the apparatus so that the heat flow, Q′, through the meter section of the auxiliary insulation is small; determining Q′; and, calculating the heat flow, Q, through the meter section of the specimen.4.2 This practice requires that the apparatus have independent temperature controls in order to operate the cold plate and auxiliary cold plate at different temperatures. In the single-sides mode, the apparatus is operated with the temperature of the auxiliary cold plate maintained at the same temperature of the hot plate face adjacent to the auxiliary insulation.NOTE 4: In principle, if the temperature difference across the auxiliary insulation is zero and there are no edge heat losses or gains, all of the power input to the meter plate will flow through the specimen. In practice, a small correction is made for heat flow, Q′, through the auxiliary insulation.4.3 The thermal conductance, C’, of the auxiliary insulation shall be determined from one or more separate tests using either Test Method C177, C1114, or as indicated in 5.4. Values of C’ shall be checked periodically, particularly when the temperature drop across the auxiliary insulation less than 1 % of the temperature drop across the test specimen.4.4 This practice is used when it is desirable to determine the thermal properties of a single specimen. For example, the thermal properties of a single specimen are used to calibrate a heat-flow-meter apparatus for Test Method C518.1.1 This practice covers the determination of the steady-state heat flow through the meter section of a specimen when a guarded-hot-plate apparatus or thin-heater apparatus is used in the single-sided mode of operation.1.2 This practice provides a supplemental procedure for use in conjunction with either Test Method C177 or C1114 for testing a single specimen. This practice is limited to only the single-sided mode of operation, and, in all other particulars, the requirements of either Test Method C177 or C1114 apply.NOTE 1: Test Methods C177 and C1114 describe the use of the guarded-hot-plate and thin-heater apparatus, respectively, for determining steady-state heat flux and thermal transmission properties of flat-slab specimens. In principle, these methods cover both the double- and single-sided mode of operation, and at present, do not distinguish between the accuracies for the two modes of operation. When appropriate, thermal transmission properties shall be calculated in accordance with Practice C1045.1.3 This practice requires that the cold plates of the apparatus have independent temperature controls. For the single-sided mode of operation, a (single) specimen is placed between the hot plate and the cold plate. Auxiliary thermal insulation, if needed, is placed between the hot plate and the auxiliary cold plate. The auxiliary cold plate and the hot plate are maintained at the same temperature. The heat flow from the meter plate is assumed to flow only through the specimen, so that the thermal transmission properties correspond only to the specimen.NOTE 2: The double-sided mode of operation requires similar specimens placed on either side of the hot plate. The cold plates that contact the outer surfaces of these specimens are maintained at the same temperature. The electric power supplied to the meter plate is assumed to result in equal heat flow through the meter section of each specimen, so that the thermal transmission properties correspond to an average for the two specimens.1.4 This practice does not preclude the use of a guarded-hot-plate apparatus in which the auxiliary cold plate is either larger or smaller in lateral dimensions than either the test specimen or the cold plate.NOTE 3: Most guarded-hot-plate apparatus are designed for the double-sided mode of operation (1).2 Consequently, the cold plate and the auxiliary cold plate are the same size and the specimen and the auxiliary insulation will have the same lateral dimensions, although the thicknesses need not be the same. Some guarded-hot-plate apparatus, however, are designed specifically for testing only a single specimen that is either larger or smaller in lateral dimensions than the auxiliary insulation or the auxiliary cold plate.1.5 This practice is suitable for use for both low- and high-temperature conditions.1.6 This practice shall not be used when operating an apparatus in a double-sided mode of operation with a known and unknown specimen, that is, with the two cold plates at similar temperatures so that the temperature differences across the known and unknown specimens are similar.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Rheological properties such as viscosity and storage and loss modulus change rapidly with temperature. High quality determinations of these properties depend upon a stable and well-known temperature of the measuring apparatus.5.2 This test method may be used for research, quality assurance, specification acceptance, and regulatory compliance.1.1 This test method describes the temperature calibration or conformance of rheometers. The applicable temperature range is 0 °C to 80 °C however other ranges may be selected for the purpose at hand.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
27 条记录,每页 15 条,当前第 2 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页