微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This practice covers specific requirements for incorporating quality control procedures into an ASTM test method. 1.2 The requirements in this practice should be looked upon as the primary requirements for quality control of a specific test method. In many cases, it may be desirable to implement additional quality control criteria to ensure the desired quality of data. The guidelines are intended to be incorporated into a comprehensive approach to quality assurance and quality control that include the more general approaches described in Practices D3856 and D4210. 1.3 The specific requirements in this practice may not be appropriate for all test methods. They will vary depending on the type of test method used as well as the analyte being determined and the sample matrix being analyzed. 1.4 This practice is for use with quantitative test methods and may not be applicable to qualitative test methods. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Purgeable organic compounds have been identified as contaminants in treated drinking water, wastewater, ground water, and Toxicity Characteristic Leaching Procedure (TCLP) leachate. These contaminants may be harmful to the environment and to people. Purge and trap sampling is a generally applicable procedure for concentrating these components prior to gas chromatographic analysis.1.1 This test method covers the identification and simultaneous measurement of purgeable volatile organic compounds. It has been validated for treated drinking water, wastewater, and ground water. This test method is not limited to these particular aqueous matrices; however, the applicability of this test method to other aqueous matrices must be demonstrated.1.2 This test method is applicable to a wide range of organic compounds that have sufficiently high volatility and low water solubility to be efficiently removed from water samples using purge and trap procedures. Table 1 lists the compounds that have been validated for this test method. This test method is not limited to the compounds listed in Table 1; however, the applicability of the test method to other compounds must be demonstrated.1.3 Analyte concentrations up to approximately 200 μg/L may be determined without dilution of the sample. Analytes that are inefficiently purged from water will not be detected when present at low concentrations, but they can be measured with acceptable accuracy and precision when present in sufficient amounts.1.4 Analytes that are not separated chromatographically, but that have different mass spectra and non-interfering quantitation ions, can be identified and measured in the same calibration mixture or water sample. Analytes that have very similar mass spectra cannot be individually identified and measured in the same calibration mixture or water sample unless they have different retention times. Coeluting compounds with very similar mass spectra, such as structural isomers, must be reported as an isomeric group or pair. Two of the three isomeric xylenes are examples of structural isomers that may not be resolved on the capillary column, and if not, must be reported as an isomeric pair.1.5 It is the responsibility of the user to ensure the validity of this test method for untested matrices.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the organic halides in water in concentrations from 5 to 1000 [mu]g/L. Higher halide concentrations may be determined by making an appropriate dilution. 1.2 This test method is applicable only for those organic halides that can be adsorbed by granular activated carbon (GAC). 2,3,4 1.3 This test method is applicable to samples whose inorganic halide concentration does not exceed the organic halide concentration by more than 20000 times. Chloride ion may be determined by Test Methods D512. See Section 6. 1.4 This test method was used successfully with several waters (see 14.3). It is the user's responsibility to ensure the validity of this test method for waters of untested matrices. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Coatings to perform satisfactorily must adhere to the substrates on which they are applied. This test method has been found useful in differentiating the degree of adhesion of coatings to substrates. It is most useful in providing relative ratings for a series of coated panels exhibiting significant differences in adhesion.4.2 Studies performed in a laboratory using the loop stylus specified in the previous edition showed meaningful adhesion data were impossible when loads of 10 to 20 kg were required to break the surface of a solvent based coating. The chrome plated loop stylus chattered and skipped across the coating surface when loads of this magnitude were required. Similar meaningless data were obtained when powder coatings were tested that required more than 10 kg to break the surface. Therefore, testing under these conditions is not applicable.1.1 This test method covers the determination of the adhesion of organic coatings such as paint, varnish, and lacquer when applied to smooth, flat (planar) panel surfaces.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D2579-93e1 Standard Test Method for Total Organic Carbon in Water (Withdrawn 2002) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 This test method covers the determination of total organic carbon in water and wastewater, including brackish waters and brines. Note 1-Test Methods D4129, D4779, and D4839 may also be used to measure carbon in water. 1.2 This procedure is applicable only to that carbonaceous matter in the sample that can be injected into the reaction zone. The syringe needle and injector opening size limit the maximum size of particles that can be injected into the reaction zone. Sludge and sediment samples should be suspended in water prior to sampling with a micropipet, where applicable. 1.3 In addition to laboratory analyses, these procedures may be applied to stream monitoring. 1.4 This test method is applicable to determining total organic carbon in water in the range from 2 to 200 mg/L. 1.5 It is the user's responsibility to ensure the validity of this test method on water of untested matrices. 1.6 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see Note A3.1.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is used for determination of the carbon content of water from a variety of natural, domestic, and industrial sources. In its most common form, this test method is used to measure organic carbon as a means of monitoring organic impurities in high purity process water used in industries such as nuclear power, pharmaceutical, and electronics. 1.1 This test method covers the determination of total carbon (TC), inorganic carbon (IC), and total organic carbon (TOC) in water in the range from 10 to 1000 μg/L of carbon. This method is for laboratory or grab sample applications and has been subjected to an interlaboratory study under the guidelines of D2777. Test Method D5997 can be used for on-line determinations. The test method utilizes persulfate or ultraviolet oxidation of organic carbon, or both coupled with a CO2 selective membrane to recover the CO2 into deionized water. The change in conductivity of the deionized water is measured and related to carbon concentration in the oxidized sample. Inorganic carbon is determined in a similar manner without the oxidation step. In both cases, the sample is acidified to facilitate CO2 recovery through the membrane. The relationship between the conductivity measurement and carbon concentration is described by a set of chemometric equations for the chemical equilibrium of CO2, HCO3– , and H+, and the relationship between the ionic concentrations and the conductivity. The chemometric model includes the temperature dependence of the equilibrium constants and the specific conductances resulting in linear response of the method over the stated range of TOC. See Test Method D4519 for a discussion of the measurement of CO2 by conductivity. 1.2 This test method has the advantage of a very high sensitivity detector that allows very low detection levels on relatively small volumes of sample. Also, use of two measurement channels allows determination of CO2 in the sample independently of organic carbon. Isolation of the conductivity detector from the sample by the CO2 selective membrane results in a very stable calibration, with minimal interferences. 1.3 This test method was used successfully with reagent water spiked with various organic materials. It is the user's responsibility to ensure the validity of this test method for waters of untested matrices. 1.4 In addition to laboratory analyses, this test method may be adapted to on line monitoring. See Test Method D5997. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The procedures in these test methods should be used with caution for acceptance of commercial shipments owing to the absence of factual information on the between-laboratory precision of many of the test procedures included in these test methods. It is recommended that any program of acceptance testing be preceded by an interlaboratory check in the laboratory of the purchaser and the laboratory of the supplier on replicate specimens of the materials to be tested for each property (or properties) to be evaluated.5.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, test samples should be used that are as homogeneous as possible, that are drawn from the material from which the disparate test results were obtained, and that are randomly assigned in equal numbers to each laboratory for testing. Other materials with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results must be adjusted in consideration of the known bias.5.2 The significance and use of particular properties are discussed in the appropriate sections of specific test methods.1.1 These test methods cover the testing of industrial filament yarns made wholly of manufactured organic-base fibers, cords twisted from such yarns, fabrics woven from such cords, and products that are made specifically for use in the manufacture of pneumatic tires. They may be applied to similar yarns and cords used for reinforcing other rubber goods and for other industrial applications. The test methods apply to nylon, polyester, and rayon yarns and tire cords twisted from such yarns and to fabrics made from such cords. The yarn or cord may be wound on cones, tubes, bobbins, spools, or beams; may be woven into fabric; or may be in some other form. The methods include testing procedure only and include no specifications or tolerances.1.2 No procedure is included for the determination of fatigue resistance of cord, but several commonly used procedures for the measurement of fatigue resistance of cords in rubber were published in the appendix of these test methods in the 1967 Annual Book of ASTM Standards, Part 24, and in earlier issues of Test Methods D885.1.3 The sections on “Growth of Conditioned Yarns and Cords,” “Properties of Yarns and Cords at Elevated Temperature,” and “Properties of Wet Yarns and Cords” have been moved to Appendix X1 – Appendix X3 as non-mandatory informational items because of their very limited use by the industry and because precision and bias statements are not included.1.4 This standard includes the following sections:  SectionAdhesion of Cord to Elastomers 34Bibliography of Tire Cord Test Methods X5Breaking Strength (Force) of Yarns and Cords at Elevated Tempera- ture X2.3Breaking Strength (Force) of Conditioned Yarns and Cords 16Breaking Strength (Force) of Oven-Dried Rayon Yarns and Cords 23Breaking Strength (Force) of Rayon Yarns and Cords at Specified Moisture Regain Level, Adjustment of 17Breaking Tenacity of Conditioned Yarns and Cords 18Breaking Tenacity of Oven-Dried Rayon Yarns and Cords 24Breaking Toughness of Yarns and Cords 28Commercial Mass 9Conditioning 7Contraction of Wet Yarns and Cords X3Count of Tire Cord Fabric 37Dip (Adhesive) Solids Pickup on Yarns and Cords 33Elongation at Break of Conditioned Yarns and Cords 19Elongation at Break of Oven-Dried Rayon Yarns and Cords 25Elongation of Rayon Yarns and Cords at a Specified Moisture Regain Level, Adjustment of Observed 20Extractable Matter in Yarns and Cords 32Force at Specified Elongation (FASE) of Conditioned Yarns and Cords 21Force at Specified Elongation (FASE) of Oven-Dried Rayon Yarns and Cords 26Growth of Conditioned Yarns and Cords X1Identification of Fibers 8Keywords 40Linear Density 11Mass of per Unit Area of Tire Cord Fabric 36Modulus of Conditioned Yarns and Cords 22Moisture Regain, Actual 10Precision and Bias of Certain Yarn and Cord Tests 39  35 toProperties of Tire Cord Fabric 38Sampling 6Shrinkage Force of Conditioned Yarns and Cords at Elevated Temper- ature  X2.5Shrinkage of Conditioned Yarns and Cords at Elevated Temperature X2.4, General 5, Tensile Properties 14SI Calculations (examples for work-to-break, specific work-to-break, and breaking toughness)  X4Stiffness of Fabric 38  12 toTensile Properties of Yarns and Cords 28Terminology 3Thickness of Cords 31Twist in Yarns and Cords 30Width of Tire Cord Fabric 35Work-to-Break of Yarns and Cords 271.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This test method measures a fundamental property of matter which is useful for the control of purity and composition for simple identification purposes, and for optical parts design. This test method is capable of readability to four figures to the right of the decimal point.1.1 This test method covers a procedure for measuring the index of refraction of transparent organic plastic materials.1.2 A refractometer method is presented. This procedure will satisfactorily cover the range of refractive indices found for such materials. Refractive index measurements require optically homogeneous specimens of uniform refractive index.NOTE 1: This test method and ISO 489 are technically equivalent.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The pendulum damping test has been found to have good sensitivity in detecting differences in coating hardness, where hardness is defined as resistance to deformation.5.2 The two procedures given in these test methods embody the principle that the amplitude of oscillation of a pendulum touching a surface decreases more rapidly the softer the surface. However, these test methods differ in respect to pendulum dimensions, and period and amplitude of oscillation.5.3 In general, the damping time of the König pendulum is approximately half that of the Persoz pendulum.5.4 The Persoz pendulum has a greater degree of discrimination than the König for measuring the hardness of soft coatings, but it may not be as suitable for testing hard, slippery films because of its tendency to skid on surfaces with a low coefficient of friction.5.5 The interaction between the pendulum and the paint film is complex, depending on both elastic and viscoelastic properties, and it may not be possible to establish a precise relationship between the two types of pendulum tests.1.1 These test methods cover the use of pendulum damping testers in the determination of hardness of organic coatings that have been applied to acceptably plane rigid surfaces, such as a metal or glass panel.1.2 Two test methods based on different pendulum types are covered as follows:1.2.1 Test Method A—König Pendulum Hardness Test.1.2.2 Test Method B—Persoz Pendulum Hardness Test.1.3 This standard is similar in content (but not technically equivalent) to ISO 1522.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
CAN3-A450.1-M86 (R2001) Ceramic Wall Tile Adhesives (Organic) 现行 发布日期 :  1970-01-01 实施日期 : 

1. Scope 1.1 This Standard specifies requirements for organic adhesives suitable for the installation of ceramic wall tile in interior areas requiring intermittent and prolonged water resistance. 1.2 Types This Standard classifies adhesives as one

定价: 364元 / 折扣价: 310

在线阅读 收 藏

5.1 Some insulation materials contain moisture, which will affect the thermal and other physical properties of the insulation.1.1 This test method will determine the moisture content, as a percentage of the dry weight of organic and inorganic insulation materials.1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the basic requirements for chromium-free fastener coatings that combine an inorganic zinc-rich basecoat with an aluminum-rich topcoat that contains an integrated lubricant. These coatings are applied by conventional dip-spin, dip-drain, or spray methods to ferrous parts which can be handled through a cleaning, or phosphate, coating, and baking operation. Phosphating or shot blast is required to clean and prepare the surface of the steel. These coatings are bake cured at temperatures up to 500°F.1.1 This specification covers the basic requirements for chromium-free fastener coatings that combine an inorganic zinc-rich basecoat with an aluminum-rich topcoat that contains an integrated lubricant.1.2 These coatings are applied by conventional dip-spin, dip-drain, or spray methods to ferrous parts which can be handled through a cleaning, or phosphate, coating, and baking operation. Phosphating or shot blast is required to clean and prepare the surface of the steel. These coatings are bake cured at temperatures up to 500°F.NOTE 1: If used, phosphate to be used in accordance with Specification F1137, grade 0.1.3 Units—The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Accurate measurement of organic carbon in water at low and very low levels is of particular interest to the electronic, life sciences, and steam power generation industries.5.2 Elevated levels of organics in raw water tend to degrade ion exchange resin capacity. Elevated levels of organics in high purity water tend to support biological growth and, in some cases, are directly detrimental to the processes that require high purity water.5.3 In power generation, naturally occurring organics can become degraded to CO2 and low molecular weight organic acids that, in turn, are corrosive to the process equipment. Their effect on conductivity may also cause water chemistry operating parameters to be exceeded, calling for plant shutdown. Halogenated and sulfonated organics may not be detectable by conductivity but at boiler temperatures will release highly corrosive chlorides, sulfates, etc.5.4 In process water in other industries, organic carbon can signify in-leakage of substances through damaged piping and components, or an unacceptable level of product loss.5.5 In wastewater treatment, organic carbon measurement of influent and process water can help optimize treatment schemes. Measurement of organic carbon at discharge may contribute to regulatory compliance.5.6 In life sciences, control of organic carbon is necessary to demonstrate compliance with regulatory limits for some types of waters.1.1 This guide covers the selection, establishment, and application of monitoring systems for carbon and carbon compounds by on-line, automatic analysis, and recording or otherwise signaling of output data. The system chosen will depend on the purpose for which it is intended (for example, regulatory compliance, process monitoring, or to alert the user to adverse trends) and on the type of water to be monitored (low purity or high purity, with or without suspended particulates, purgeable organics, or inorganic carbon). If it is to be used for regulatory compliance, the test method published or referenced in the regulations should be used in conjunction with this guide and other ASTM test methods. This guide covers carbon concentrations of 0.05 µg/L to 50 000 mg/L. Low end sensitivity and quantitative results may vary among instruments. This guide covers the on-line measurement techniques listed in Table 1. Additional laboratory test methods are available: Test Methods D4129, D4839, D5904, D6317, and D7573.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Many coatings used in the coil coating and other industries achieve a degree of solvent resistance after they have experienced a bake condition characterized by exposure to elevated temperatures in an oven over time. Insufficient bake, or occasionally over bake, may affect the intended chemical bonds or physical curing of the film and result in reduced solvent resistance.5.2 The mechanical rubbing machine provides consistent stroke length, rate, pressure, and contact area that are not subject to variables such as human fatigue (see Practice D5402).5.3 Factors other than bake can influence degree of solvent resistance of a coated surface. Paint film chemistry and composition, surface preparation, oven dwell time, oven air velocity, ambient oven temperature, oven profiling, film thickness, etc., all are influential. The test solvent used in the rub machine has a significant effect on the number of double rubs measured. Common solvents used for these tests include Methyl Ethyl Ketone (MEK), Methyl Isobutyl Ketone (MIBK), and Isopropyl Alcohol to name a few. The specific solvent to be used and the umber of double rubs to be achieved should be agreed upon between manufacturer and user for any given coating system, thickness, and application.1.1 This test method covers a mechanical rub method for assessing the solvent resistance of an organic coating that chemically and/or physically changes during the curing process. This technique can be used in the laboratory, in the field, or in the fabricating shop.1.2 This test method does not specify the solvent, number of double rubs, or expected test results.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D5178-21 Standard Test Method for Mar Resistance of Organic Coatings Active 发布日期 :  1970-01-01 实施日期 : 

5.1 In some situations, marring of coatings applied to substrates under typical use conditions is unacceptable. This test method has been found useful in differentiating the degree of marring of coatings on substrates. It is most useful in providing relative ratings for a series of coated panels exhibiting significant differences in marring.5.2 In a limited laboratory study, meaningful mar results were impossible when powder coatings were tested. The mar marking, that is, scratches, became less perceptible with time. Therefore, powder coatings may not be applicable coatings for this test method.1.1 This test method covers the determination of the mar resistance on smooth, flat surfaces. Results are expressed in terms of force-to-mar films of organic coatings such as paint, varnish, and lacquer when applied to smooth, flat planar panel surfaces.1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
175 条记录,每页 15 条,当前第 3 / 12 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页