微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Resins used in demineralization systems may deteriorate due to many factors including chemical attack, fouling by organic and inorganic materials, mishandling, or the effects of aging. Detection of degradation or fouling may be important in determining the cause of poor demineralizer performance.1.1 This guide presents a series of tests and evaluations intended to detect fouling and degradation of particulate ion exchange materials. Suggestions on reducing fouling and on cleaning resins are given.1.2 This guide is to be used only as an aid in the evaluation of particulate ion exchange material performance and does not purport to address all possible causes of unsatisfactory performance. The evaluations of mechanical and operational problems are not addressed.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Hexavalent chromium is anthropogenic from a number of commercial and industrial sources. It readily penetrates biological membranes and has been identified as a carcinogen and industrial toxin. Hexavalent chromium is a known inhalation irritant and is associated with respiratory cancer (5).5.2 Ambient atmospheric concentrations of hexavalent chromium are well below the detection limits of previous analytical methods utilized for the determination of hexavalent chromium (2).5.3 Ambient atmospheric concentrations of hexavalent chromium provide a means of evaluating exposures in a manner that can be related to health-based risk levels. The data for samples collected in situ provide an improved basis for health assessments of potential exposures (5).5.4 This test method provides step-by-step instructions for the sampling and analysis of total suspended ambient air particulates for hexavalent chromium.5.5 This test method assumes that field and laboratory personnel are familiar with low volume ambient air sampling and hexavalent chromium analysis by ion chromatography with post-column derivatization. This method should not be performed for regulatory or compliance purposes until the field and laboratory personnel have demonstrated the ability to collect and analyze samples in such a manner as to pass the quality control requirements found in Section 13.1.1 This test method specifies a procedure for the sampling and analysis of airborne particulate matter for hexavalent chromium in ambient air samples.1.2 This method is applicable to the determination of masses of 0.40 to 20.0 ng of hexavalent chromium per sample without dilution. Detection limits vary by instrumentation. Some laboratories may be able to achieve lower detection limits. The lower limit of applicability for this method was determined in a 2019 multi-laboratory detection limit study (1).21.3 This method is applicable to hexavalent chromium measurement in the atmosphere from 0.019 to 0.926 ng/m3 assuming a 21.6 m3 sample volume. The lower range may be decreased with longer sampling times. The upper range can be increased using appropriate dilutions.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The measurement of particulate matter and collected residue emission rates is an important test method widely used in the practice of air pollution control. Particulate matter measurements after control devices are necessary to determine total emission rates into the atmosphere.5.1.1 These measurements, when approved by national, state, provincial, or other regional agencies, are often required for the purpose of determining compliance with regulations and statutes.5.1.2 The measurements made before and after control devices are often necessary to demonstrate conformance with regulatory or contractual performance specifications.5.2 The collected residue obtained with this test method is also important in characterizing stack emissions. However, the utility of these data is limited unless a chemical analysis of the collected residue is performed.5.3 These measurements also can be used to calibrate continuous particulate emission monitoring systems by correlating the output of the monitoring instruments with the data obtained by using this test method.1.1 This test method2 covers a method for the measurement of particulate matter (dust) concentration in emission gases in the concentrations below 20 mg/m3 standard conditions, with special emphasis around 5 mg/m3.1.2 To meet the requirements of this test method, the particulate sample is weighed to a specified level of accuracy. At low dust concentrations, this is achieved by:1.2.1 Precise and repeatable weighing procedures,1.2.2 Using low tare weight weighing dishes,1.2.3 Extending the sampling time at conventional sampling rates, or1.2.4 Sampling at higher rates at conventional sampling times (high-volume sampling).1.3 This test method differs from Test Method D3685/D3685M by requiring the mass measurement of filter blanks, specifying weighing procedures, and requiring monitoring of the flue gas flow variability over the testing period. It requires that the particulate matter collected on the sample filter have a mass at least five times a positive mass difference on the filter blank. High volume sampling techniques or an extension of the sampling time may be employed to satisfy this requirement. This test method has tightened requirements on sampling temperature fluctuations and isokinetic sampling deviation. This test method has eliminated the in-stack filtration technique.1.4 This test method may be used for calibration of automated monitoring systems (AMS). If the emission gas contains unstable, reactive, or semi-volatile substances, the measurement will depend on the filtration temperature.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This practice describes the standard procedures for providing exposure of thermal control materials to a simulated space environment comprising of the major features of vacuum, electromagnetic radiation, charged particle radiation, and temperature control. Broad recommendations relating to spectral reflectance measurements, as well as test parameters and other information that should be reported as an aid in interpreting test results are delineated. Specifications are provided for the vacuum system, solar simulator, charged particle sources, safety precautions, and data interpretation.1.1 This practice describes procedures for providing exposure of thermal control materials to a simulated space environment comprising the major features of vacuum, electromagnetic radiation, charged particle radiation, and temperature control.1.2 Broad recommendations relating to spectral reflectance measurements are made.1.3 Test parameters and other information that should be reported as an aid in interpreting test results are delineated.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The ash content determines the weight of the noncombustible part of a particulate wood fuel that oxidizes during a combustion process but releases no energy.1.1 This test method covers the determination of ash expressed as the percent of residue remaining after dry oxidation of particulate wood fuels. Particulate wood fuels are defined in Terminology E1126.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This test method describes a procedure for determining the penetration of aerosols through a one- or twostage HEPA filter installation. Testing multiple filter stages as a single unit eliminates the need for: installation of auxiliary aerosol bypass ducts, installation of aerosol injection manifolds between filter stages, and entry of test personnel into contaminated areas. It provides for filter testing without interruption of plant processes and operation of ventilation systems. The procedure is applicable for measuring penetrations requiring sensitivities to 0.1 μm. A challenge concentration of 2.5 × 10 5 particles/cm3 (p/cm3), is required for evaluation of one-filter stage, and 2 × 106 p/cm 3, or about 30 μg/L (assuming unit density), is required to properly evaluate a two-stage HEPA filter system as one unit. This test method can determine the penetration of HEPA filters in the particle-size range from 0.1 to 0.2 μm where the greatest penetration of particles is likely to occur.1.1 This test method covers the procedure and equipment for measuring the penetration of test particles through high-efficiency particulate air (HEPA) filter systems using a laser aerosol spectrometer (LAS). This test method provides the capability of evaluating the overall effectiveness of HEPA filter systems consisting of one or two filter stages. 1.2 The aerosols used for testing have a heterodisperse size distribution in the submicrometer diameter range from 0.1 to 1.0 μm. 1.3 The purpose for conducting in-place filter testing by this test method is in the ability to determine penetration of multi-stage installations, without individual stage tests. Particle penetration as low as 10−8 can be measured by this test method. Also, the LAS provides a measure of penetration for discrete particle sizes. 1.4 Maximum penetration for an installed HEPA filter system is 5 × 10−4 for one filter stage, and 2.5 × 10−7 for two stages in series is recommended. Note 1—Acceptance penetration criteria must be specified in the program, or owners specifications. The penetration criteria suggested in this test method is referenced in Ref (1). 1.5 The values stated in SI units are to be regarded as the standard. 1.6 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 9.6.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

One of the major factors in the unsatisfactory performance of anion exchange resins is their fouling by organic material. Knowledge of the degree of fouling can be used to assess the condition of the resin and may indicate the need for pretreatment of the influent, remedial cleaning procedures, or resin replacement.It is recognized that this test method may not remove and detect cation sloughage products or declumping agents. It is not intended to remove all organic compounds from the resin.Since the chemical structures of organics compounds fouling the resin are generally unknown and are expressed only on the basis of their carbon content, interpretation of test results to form a basis for predictions for resin performance or cleaning procedures should be approached with caution.Samples may be taken before or after plant regeneration, or both, depending on the type of information desired. This decision is left to the judgment of the user.1.1 This test method provides a general estimate of the organic fouling of an anion exchange resin based upon total organic carbon measurements.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see 8.3.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 There are a variety of darkening agents that contribute to air and surface contamination in industrial, urban and rural environments. Biofilms (fungal and algal), soil minerals, plant fragments, rubber fragments, metal corrosion and soot are common darkening agents. Soot is formed as an unwanted by-product of combustion and consequently varies widely with the type of fuel and combustion conditions. Carbon black, on the other hand, is purposely produced under a controlled set of conditions. Therefore, it is important to be able to distinguish carbon black from soot, as well as other environmental contaminants.1.1 This practice covers sampling and testing for distinguishing ASTM type carbon black, in the N100 to N900 series, from other environmental particulates.1.2 This practice requires some degree of expertise on the part of the microscopist. For this reason, the microscopist must have adequate training and on-the-job experience in identifying the morphological parameters of carbon black and general knowledge of other particles that may be found in the environment. In support of this analysis, Donnet's book2 is highly recommended to be used as a technical reference for recognizing and understanding the microstructure of carbon black.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

1.1 This practice covers the collection of airborne particulate lead during abatement and construction activities. The practice is intended for use in protecting workers from exposures to high concentrations of airborne particulate lead. This practice is not intended for the measurement of ambient lead concentrations in air. 1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The test method supports previously proposed occupational exposure standards (7, 8) for DPM. A DPM exposure limit has since been promulgated for metal and nonmetal mines, but there currently are no limits for general occupational settings (a proposed limit (7) was withdrawn from the ACGIH Notice of Intended Changes (NIC) list in 2003). In the United States alone, over a million workers are occupationally exposed (9). An exposure standard for mines is especially important because miners’ exposures are often quite high. NIOSH (9), the International Agency for Research on Cancer (10) (IARC), the World Health Organization (11) (WHO), the California Environmental Protection Agency (12), the U.S. Environmental Protection Agency (13) (EPA), and the National Toxicology Program (14) reviewed the animal and human evidence on DPM and all classified diesel exhaust as a probable human carcinogen or similar designation. In 2012, the WHO reclassified diesel exhaust as carcinogenic to humans (Group 1) (15). In addition, in a study of miners, the National Cancer Institute (NCI) and NIOSH reported increased risk of death from lung cancer in exposed workers (16, 17).5.2 The test method provides a measure of occupational exposure to DPM. Given the economic and public health impact of epidemiological studies, accurate risk assessment is critical. The NIOSH/NCI study of miners exposed to diesel exhaust provides quantitative estimates of lung cancer risk (16, 17). The test method was used for exposure monitoring. Since publication (in 1996) as NMAM 5040, the method has been routinely used for occupational monitoring (5).5.3 Studies indicate a positive association between airborne levels of fine particles and respiratory illness and mortality (18-26). The test method and others have been used for EPA air monitoring networks and air pollution studies. Because different methods produce different results, method standardization is essential for regulatory compliance determinations and valid comparisons of interlaboratory data.5.4 The test method is being applied for emission-control testing.1.1 This test method covers determination of organic and elemental carbon (OC and EC) in the particulate fraction of diesel engine exhaust, hereafter referred to as diesel particulate matter (DPM). Samples of workplace atmospheres are collected on quartz-fiber filters. The method also is suitable for other types of carbonaceous aerosols and has been widely applied to environmental monitoring. It is not appropriate for sampling volatile or semi-volatile components. These components require sorbents for efficient collection.NOTE 1: Sample collection and handling procedures for environmental samples differ from occupational samples. This standard addresses occupational monitoring of DPM in workplaces where diesel-powered equipment is used.1.2 The method is based on a thermal-optical technique (1, 2).2 Speciation of OC and EC is achieved through temperature and atmosphere control, and an optical feature that corrects for sample charring (carbonization).1.3 A portion of a 37-mm, quartz-fiber filter sample is analyzed. Results for the portion are used to calculate the total mass of OC and EC on the filter. The portion must be representative of the entire filter deposit. If the deposit is uneven, two or more representative portions should be analyzed for an average. Alternatively, the entire filter can be analyzed, in multiple portions, to determine the total mass. Open-faced cassettes give even deposits but may not be practical. At 2 L/min, closed-face cassettes generally give results equivalent to open-face cassettes if other dusts are absent. Higher flow rates may be employed, but closed-faced cassettes operated at higher flow rates (for example, 5 L/min) sometimes have uneven deposits due to particle impaction at the center of the filter. Other samplers may be required, depending on the sampling environment (2-5).1.4 The calculated limit of detection (LOD) depends on the level of contamination of the media blanks (5). A LOD of approximately 0.2-µg carbon per cm2 of filter was estimated when analyzing a sucrose standard solution applied to filter portions cleaned immediately before analysis. LODs based on media blanks stored after cleaning are usually higher. LODs based on a set of media blanks analyzed over a six month period at a commercial laboratory were OC = 1.2 µg/cm2, EC = 0.4 µg/cm2, and TC = 1.3 µg/cm2, where TC refers to total carbon (TC = OC + EC). In practice, the LOD estimate provided by a laboratory is based on results for a set of media blanks submitted with the samples. To reduce blank variability (due to lack of loading), a manual OC-EC split is assigned at the time when oxygen is introduced. With manual splits, the SD for media blanks is typically about 0.02–0.03 µg EC/cm2, giving LODs (3 × SD blank) from about 0.06–0.09 µg EC/cm2. The corresponding air concentration depends on the deposit area (filter size) and air volume.1.5 OC-EC methods are operational, which means the analytical procedure defines the analyte. The test method offers greater selectivity and precision than thermal techniques that do not correct for charring of organic components. The analysis method is simple and relatively quick (about 15 min). The analysis and data reduction are automated, and the instrument is programmable (different methods can be saved as methods for other applications).1.6 A method (5040) for DPM based on thermal-optical analysis has been published by the National Institute for Occupational Safety and Health (NIOSH). Method updates (3, 4) have been published since its initial (1996) publication in the NIOSH Manual of Analytical Methods (NMAM). Both OC and EC are determined by NMAM 5040. An EC exposure marker (for DPM) was recommended because EC is a more selective measure of exposure. A comprehensive review of the method and rationale for selection of an EC marker are provided in a Chapter of NMAM (5).1.7 The thermal-optical instrument required for the analysis is manufactured by a private laboratory.3 As with most instrumentation, design improvements continue to be made. Different laboratories may be using different instrument models.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.1.5, 8.3, and 12.12.2.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The test procedures described in this test method can be used to determine the total weight basis moisture of any particulate wood fuel meeting the requirements specified in this test method.1.1 This test method covers the determination of total weight basis moisture in the analysis sample of particulate wood fuel. The particulate wood fuel may be sanderdust, sawdust, pellets, green tree chips, hogged fuel, or other type particulate wood fuel having a maximum particle volume of 16.39 cm3 (1 in.3). It is used for calculating other analytical results to a dry basis. Moisture, when determined as herein described, may be used to indicate yields on processes, to provide the basis for purchasing and selling, or to establish burning characteristics.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The test procedures described in this test method can be used to determine the percentage of gaseous products, exclusive of moisture vapor, of any particulate wood fuel meeting the requirements specified in this test method.1.1 This test method determines the percentage of gaseous products, exclusive of moisture vapor, in the analysis sample of particulate wood fuel that is released under the specific conditions of the test. The particulate wood fuel may be sanderdust, sawdust, pellets, green tree chips, hogged fuel, or other type particulate wood fuel having a maximum particle volume of 16.39 cm3 (1 in.3). Volatile matter, when determined as herein described, may be used to indicate yields on processes to provide the basis for purchasing and selling or to establish burning characteristics.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

2.1 The test procedures described in this test method can be used to determine the bulk density (or bulk specific weight) of any densified particulate biomass fuel meeting the requirements specified in this test method.1.1 This test method covers the procedure for the determination of bulk density (or bulk specific weight) of densified particulate biomass fuels with a maximum particle volume of 16.39 cm3 (1 in. 3).1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The measurement of particulate matter and collected residue emission rates is an important test widely used in the practice of air pollution control. Particulate matter measurements after control devices are necessary to determine total emission rates to the atmosphere.5.1.1 These measurements, when approved by federal and state agencies, are often required for the purpose of determining compliance with regulations and statutes.5.1.2 The measurements made before and after control devices are often necessary as a means of demonstrating conformance with contractual performance specifications.5.2 The collected residue obtained with these test methods is also important in characterizing stack emissions. However, the utility of these data is limited unless a chemical analysis of the collected residue is performed.1.1 These test methods describe procedures to determine the mass emission rates of particulate matter and collected residue in gaseous streams by in-stack test methods (Test Method A) or out-of-stack test methods (Test Method B).1.2 These test methods are suitable for measuring particulate matter and collected residue concentrations.1.3 These test methods include a description of equipment and procedures to be used for obtaining samples from effluent ducts and stacks, a description of equipment and procedures for laboratory analysis, and a description of procedures for calculating results.1.4 These test methods are applicable for sampling particulate matter and collected residue in wet (Test Method A or B) or dry (Test Method A) streams before and after particulate matter control equipment, and for determination of control device particulate matter collection efficiency.1.5 These test methods are also applicable for determining compliance with regulations and statutes limiting particulate matter existing in stack gases when approved by federal or state agencies.1.6 The particulate matter and collected residue samples collected by these test methods may be used for subsequent size and chemical analysis.1.7 These test methods describe the instrumentation, equipment, and operational procedures, including site selection, necessary for sampling and determination of particulate mass emissions. These test methods also include procedures for collection and gravimetric determination of residues collected in an impinger-condenser train. The sampling and analysis of particulate matter may be performed independently or simultaneously with the determination of collected residue.1.8 These test methods provide for the use of optional filter designs and filter material as necessary to accommodate the wide range of particulate matter loadings to which the test methods are applicable.1.9 Stack temperatures limitation for Test Method A is approximately 400°C (752°F) and for Test Method B is 815°C (1500°F).1.10 A known limitation of these test methods concerns the use of collected residue data. Since some collected residues can be formed in the sample train by chemical reaction in addition to condensation, these data should not be used without prior characterization (see 4.4.1).1.10.1 A second limitation concerns the use of the test methods for sampling gas streams containing fluoride, or ammonia or calcium compounds in the presence of sulfur dioxide and other reactive species having the potential to react within the sample train.1.10.2 A suspected but unverified limitation of these test methods concerns the possible vaporization and loss of collected particulate organic matter during a sampling run.1.11 The values stated in either SI units or inch-pound units are to be regarded separately as standard within the text. The inch-pound units are shown in parentheses. The values stated in each system are not exact equivalents; therefore each system shall be used independently of the other. Combining values from the two systems may result in nonconformance to this standard.1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.13 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This practice will be used most frequently to sample materials as received from the manufacturer in the original shipping container and prior to any resin-conditioning procedure. Since certain ion-exchange materials are supplied by the manufacturer in the dry or free-flowing state whereas others are supplied moist, it is necessary to employ two different sampling devices. Therefore, this practice is divided into Sampling Procedure—Dry or Free-Flowing Material (Section 8), and Sampling Procedure—Moist Material (Section 9).5.2 Once the sample is obtained, it is necessary to protect the ion-exchange materials from changes. Samples should be placed in sealable, gasproof containers immediately.1.1 These practices2 cover procedures for obtaining representative samples of ion-exchange materials. The following practices are included:  SectionsPractice A—Sampling from a Single Package and Multiple Package Lots or Shipments  4 to 11Practice B—Sampling from Fixed Bed Ion-Exchange Equipment Having Unrestricted Head Room  12 to 16Practice C—Sampling from Fixed Bed Ion-Exchange Equipment Having Restricted Head Room  17 to 211.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
68 条记录,每页 15 条,当前第 3 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页