微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
AS 2163-1995 Laboratory glassware - Measuring cylinders 现行 发布日期 :  1995-07-05 实施日期 : 

定价: 345元 / 折扣价: 294 加购物车

在线阅读 收 藏

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏

定价: 176元 / 折扣价: 150 加购物车

在线阅读 收 藏

4.1 Method A makes use of the same compaction equipment and molds commonly available in soil laboratories and used for other soil-cement tests. It is considered that Method A gives a relative measure of strength rather than a rigorous determination of compressive strength. Because of the lesser height to diameter ratio (1.15) of the cylinders, the compressive strength determined by Method A will normally be greater than that for Method B.4.2 Method B, because of the greater height to diameter ratio (2.00), gives a better measure of compressive strength from a technical viewpoint since it reduces complex stress conditions that may occur during the shearing of Method A specimens.4.3 In practice, Method A has been more commonly used than Method B. As a result, it has been customary to evaluate or specify compressive strength values as determined by Method A. A factor for converting compressive strength values based on height to diameter ratio is given in Section 8.3NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the compressive strength of soil-cement using molded cylinders as test specimens.1.2 Two alternative procedures are provided as follows:1.2.1 Method A—This procedure uses a test specimen prepared in a mold complying with Test Methods D698 (4.0 in. (101.6 mm) in diameter and 4.6 in. (116.8 mm) in height), sometimes referred to as a proctor mold, resulting in a height over diameter ratio of 1.15. This test method may be used only on materials with 30 % or less retained on the 19.0-mm (3/4-in.) sieve. See Note 2.1.2.2 Method B—This procedure uses a test specimen with a height over diameter ratio of 2.0 prepared in a cylindrical mold in accordance with Practice D1632 (2.8 in. (71.1 mm) in diameter and 9.0 in. (229 mm) in height). This test method is applicable to those materials that pass the 4.75-mm (No. 4) sieve.1.3 Units—The values stated in inch-pound units are to be regarded as standard, except as noted in below. The values given in parentheses are mathematical conversions to SI units, and are provided for information only and are not considered standard. Sieve sizes are identified by the standard designations in Specification E11. The alternative sieve size designation given in parentheses is for information only and does not represent a different standard sieve size.1.3.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs.1.3.2 The slug unit of mass is almost never used in commercial practice, that is, density, balances, etc. Therefore, the standard unit for mass in this standard is either kilogram (kg) or gram (g), or both. Also, the equivalent inch-pound unit (slug) is not given/presented in parentheses.1.3.3 It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit for mass. However, the use of balances or scales, recording pounds of mass (lbm) or recording density in lbm/ft3 shall not be regarded as nonconformance with this standard.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by this test method.1.4.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

2.1 This specification specifies the minimum warnings and instructions that are to be provided on the CO2 cylinder itself.1.1 This specification covers warnings used on refillable CO2 cylinders with a threaded interface used in the sport of paintball.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers centrifugally cast cylinders with an outer layer of white cast iron and the remainder of the material of gray cast iron. These castings are suitable for pressure containing parts of the design strength of which is based on the gray iron portion of the cylinder. The white iron portion of the cylinder shall be made to a minimum hardness and the casting process shall be controlled to produce a metallurgical bond between the two metal layers. All surfaces shall be machined prior to the cylinders being placed into service. The tensile strength of the cast irons shall be measured by tension testing while the thickness of the white cast iron shall be determined by ultrasonic testing.1.1 This specification2 covers centrifugally cast cylinders with an outer layer of white cast iron and the remainder of the material of gray cast iron. These castings are suitable for pressure-containing parts, the design strength of which is based on the gray iron portion of the cylinder. These castings are suitable for service at temperatures up to 450 °F [230 °C].1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 The following safety hazards caveat pertains only to the test method portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Cast-in-place cylinder strength relates to the strength of concrete in the structure due to the similarity of curing conditions because the cylinder is cured within the slab. However, due to differences in moisture condition, degree of consolidation, specimen size, and length-diameter ratio, there is not a unique relationship between the strength of cast-in-place cylinders and cores of the same age. When cores can be drilled undamaged and tested in the same moisture condition as the cast-in-place cylinders, the strength of the cylinders can be expected to be on average 10 % higher than the cores at ages up to 91 days for specimens of the same size and length-diameter ratio.44.2 Strength of cast-in-place cylinders may be used for various purposes, such as estimating the load-bearing capacity of slabs, determining the time of form and shore removal, and determining the effectiveness of curing and protection.AbstractThis test method covers the determination of strength of cylindrical concrete specimens that have been molded in place using special molds attached to formwork. A concrete cylinder mold assembly consisting of a mold and a tubular support member is fastened within the concrete formwork prior to placement of the concrete. The elevation of the mold upper edge is adjusted to correspond to the plane of the finished slab surface. The mold support prevents direct contact of the slab concrete with the outside of the mold and permits its easy removal from the hardened concrete. Strength of cast-in-place cylinders may be used for various purposes, such as estimating the load-bearing capacity of slabs, determining the time of form and shore removal, and determining the effectiveness of curing and protection. Consolidation of concrete in the mold may be varied to simulate the conditions of placement. Internal vibration of concrete in the mold is prohibited except under special circumstances.1.1 This test method covers the determination of strength of cylindrical concrete specimens that have been molded in place using special molds attached to formwork. This test method is limited to use in slabs where the depth of concrete is from 125 mm to 300 mm [5 in. to 12 in.].1.2 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.2)1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is designed to produce inplane shear property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors that influence the inplane shear response and should therefore be reported are material, method of material preparation, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, void content, and fiber volume fraction. Properties, in the test direction, that may be obtained from this test method are as follows:5.1.1 Inplane Shear Strength, τ12u,5.1.2 Inplane Shear Strain at Failure, γ12u , and 5.1.3 Inplane Shear Modulus, G12.1.1 This test method determines the inplane shear properties of wound polymer matrix composites reinforced by high-modulus continuous fibers. It describes testing of hoop wound (90°) cylinders in torsion for determination of inplane shear properties.1.2 The technical content of this test method has been stable since 1993 without significant objection from its stakeholders. As there is limited technical support for the maintenance of this test method, changes since that date have been limited to items required to retain consistency with other ASTM D30 Committee standards, including editorial changes and incorporation of updated guidance on specimen preconditioning and environmental testing. The test method, therefore, should not be considered to include any significant changes in approach and practice since 1993. Future maintenance of the test method will only be in response to specific requests and performed only as technical support allows.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This practice covers basic procedures for the safe handling and transfilling of small paintball carbon dioxide cylinders for pressure cycling cylinder transfilling method most commonly used by paintball field and/or store operators. The basic standards presented herein should not be confused with federal, state, provincial, or municipal specifications or regulations, insurance requirements of national safety codes. Cylinder inspection include: conducting valve test twist on empty cylinders to ensure the valve is properly attached, checking on the rotation indication mark between tank and bottle, avoiding of polishing and rebuffing of cylinders and avoiding of refilling ruptured tanks. Safety procedures also include checking on pressure relief passages from any obstructions, inspecting on the correct burst disk as specified, avoiding of refilling cylinders failing to meet specified requirements, inspecting safety relief device, cylinder wall, and the valve body of cylinders as specified.1.1 This practice is intended to satisfy the demand for information on the basic procedures for the safe handling and transfilling of small (not bulk) paintball CO2 cylinders commonly used with a paintball marker for propulsion of a paintball. This standard does not address issues dealing with the transfilling, storage, and handling of supply cylinders that may be used in transfilling smaller cylinders.1.2 The CO2 fill procedures are written for the pressure cycling cylinder transfilling method most commonly used by paintball field or store operators, or both.1.3 This practice should not be confused with federal, state, provincial, or municipal specifications or regulations; insurance requirements; or national safety codes.1.4 This practice does not purport to address all of the safety problems, if any, associated with the safe handling and transfilling of small paintball cylinders. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations, such as and not limited to DOT, CGA, and OSHA, prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is designed to produce transverse compressive property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors that influence the transverse compressive response and should therefore be reported are: material, method of material preparation, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, void content, and fiber volume fraction. Properties in the test direction that may be obtained from this test method are:5.1.1 Transverse compressive strength, σ22uc,5.1.2 Transverse compressive strain at failure, ε22uc,5.1.3 Transverse compressive modulus of elasticity, E22, and5.1.4 Poisson's ratio, γ21.1.1 This test method determines the transverse compressive properties of wound polymer matrix composites reinforced by high-modulus continuous fibers. It describes testing of hoop wound (90°) cylinders in axial compression for determination of transverse compressive properties.1.2 The technical content of this test method has been stable since 1993 without significant objection from its stakeholders. As there is limited technical support for the maintenance of this test method, changes since that date have been limited to items required to retain consistency with other ASTM D30 Committee standards, including editorial changes and incorporation of updated guidance on specimen preconditioning and environmental testing. The test method, therefore, should not be considered to include any significant changes in approach and practice since 1993. Future maintenance of the test method will only be in response to specific requests and performed only as technical support allows.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏