微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Method A makes use of the same compaction equipment and molds commonly available in soil laboratories and used for other soil-cement tests. It is considered that Method A gives a relative measure of strength rather than a rigorous determination of compressive strength. Because of the lesser height to diameter ratio (1.15) of the cylinders, the compressive strength determined by Method A will normally be greater than that for Method B.4.2 Method B, because of the greater height to diameter ratio (2.00), gives a better measure of compressive strength from a technical viewpoint since it reduces complex stress conditions that may occur during the shearing of Method A specimens.4.3 In practice, Method A has been more commonly used than Method B. As a result, it has been customary to evaluate or specify compressive strength values as determined by Method A. A factor for converting compressive strength values based on height to diameter ratio is given in Section 8.3NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the compressive strength of soil-cement using molded cylinders as test specimens.1.2 Two alternative procedures are provided as follows:1.2.1 Method A—This procedure uses a test specimen prepared in a mold complying with Test Methods D698 (4.0 in. (101.6 mm) in diameter and 4.6 in. (116.8 mm) in height), sometimes referred to as a proctor mold, resulting in a height over diameter ratio of 1.15. This test method may be used only on materials with 30 % or less retained on the 19.0-mm (3/4-in.) sieve. See Note 2.1.2.2 Method B—This procedure uses a test specimen with a height over diameter ratio of 2.0 prepared in a cylindrical mold in accordance with Practice D1632 (2.8 in. (71.1 mm) in diameter and 9.0 in. (229 mm) in height). This test method is applicable to those materials that pass the 4.75-mm (No. 4) sieve.1.3 Units—The values stated in inch-pound units are to be regarded as standard, except as noted in below. The values given in parentheses are mathematical conversions to SI units, and are provided for information only and are not considered standard. Sieve sizes are identified by the standard designations in Specification E11. The alternative sieve size designation given in parentheses is for information only and does not represent a different standard sieve size.1.3.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs.1.3.2 The slug unit of mass is almost never used in commercial practice, that is, density, balances, etc. Therefore, the standard unit for mass in this standard is either kilogram (kg) or gram (g), or both. Also, the equivalent inch-pound unit (slug) is not given/presented in parentheses.1.3.3 It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit for mass. However, the use of balances or scales, recording pounds of mass (lbm) or recording density in lbm/ft3 shall not be regarded as nonconformance with this standard.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by this test method.1.4.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

2.1 This specification specifies the minimum warnings and instructions that are to be provided on the CO2 cylinder itself.1.1 This specification covers warnings used on refillable CO2 cylinders with a threaded interface used in the sport of paintball.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers centrifugally cast cylinders with an outer layer of white cast iron and the remainder of the material of gray cast iron. These castings are suitable for pressure containing parts of the design strength of which is based on the gray iron portion of the cylinder. The white iron portion of the cylinder shall be made to a minimum hardness and the casting process shall be controlled to produce a metallurgical bond between the two metal layers. All surfaces shall be machined prior to the cylinders being placed into service. The tensile strength of the cast irons shall be measured by tension testing while the thickness of the white cast iron shall be determined by ultrasonic testing.1.1 This specification2 covers centrifugally cast cylinders with an outer layer of white cast iron and the remainder of the material of gray cast iron. These castings are suitable for pressure-containing parts, the design strength of which is based on the gray iron portion of the cylinder. These castings are suitable for service at temperatures up to 450 °F [230 °C].1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 The following safety hazards caveat pertains only to the test method portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Cast-in-place cylinder strength relates to the strength of concrete in the structure due to the similarity of curing conditions because the cylinder is cured within the slab. However, due to differences in moisture condition, degree of consolidation, specimen size, and length-diameter ratio, there is not a unique relationship between the strength of cast-in-place cylinders and cores of the same age. When cores can be drilled undamaged and tested in the same moisture condition as the cast-in-place cylinders, the strength of the cylinders can be expected to be on average 10 % higher than the cores at ages up to 91 days for specimens of the same size and length-diameter ratio.44.2 Strength of cast-in-place cylinders may be used for various purposes, such as estimating the load-bearing capacity of slabs, determining the time of form and shore removal, and determining the effectiveness of curing and protection.AbstractThis test method covers the determination of strength of cylindrical concrete specimens that have been molded in place using special molds attached to formwork. A concrete cylinder mold assembly consisting of a mold and a tubular support member is fastened within the concrete formwork prior to placement of the concrete. The elevation of the mold upper edge is adjusted to correspond to the plane of the finished slab surface. The mold support prevents direct contact of the slab concrete with the outside of the mold and permits its easy removal from the hardened concrete. Strength of cast-in-place cylinders may be used for various purposes, such as estimating the load-bearing capacity of slabs, determining the time of form and shore removal, and determining the effectiveness of curing and protection. Consolidation of concrete in the mold may be varied to simulate the conditions of placement. Internal vibration of concrete in the mold is prohibited except under special circumstances.1.1 This test method covers the determination of strength of cylindrical concrete specimens that have been molded in place using special molds attached to formwork. This test method is limited to use in slabs where the depth of concrete is from 125 mm to 300 mm [5 in. to 12 in.].1.2 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.2)1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is designed to produce inplane shear property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors that influence the inplane shear response and should therefore be reported are material, method of material preparation, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, void content, and fiber volume fraction. Properties, in the test direction, that may be obtained from this test method are as follows:5.1.1 Inplane Shear Strength, τ12u,5.1.2 Inplane Shear Strain at Failure, γ12u , and 5.1.3 Inplane Shear Modulus, G12.1.1 This test method determines the inplane shear properties of wound polymer matrix composites reinforced by high-modulus continuous fibers. It describes testing of hoop wound (90°) cylinders in torsion for determination of inplane shear properties.1.2 The technical content of this test method has been stable since 1993 without significant objection from its stakeholders. As there is limited technical support for the maintenance of this test method, changes since that date have been limited to items required to retain consistency with other ASTM D30 Committee standards, including editorial changes and incorporation of updated guidance on specimen preconditioning and environmental testing. The test method, therefore, should not be considered to include any significant changes in approach and practice since 1993. Future maintenance of the test method will only be in response to specific requests and performed only as technical support allows.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This practice covers basic procedures for the safe handling and transfilling of small paintball carbon dioxide cylinders for pressure cycling cylinder transfilling method most commonly used by paintball field and/or store operators. The basic standards presented herein should not be confused with federal, state, provincial, or municipal specifications or regulations, insurance requirements of national safety codes. Cylinder inspection include: conducting valve test twist on empty cylinders to ensure the valve is properly attached, checking on the rotation indication mark between tank and bottle, avoiding of polishing and rebuffing of cylinders and avoiding of refilling ruptured tanks. Safety procedures also include checking on pressure relief passages from any obstructions, inspecting on the correct burst disk as specified, avoiding of refilling cylinders failing to meet specified requirements, inspecting safety relief device, cylinder wall, and the valve body of cylinders as specified.1.1 This practice is intended to satisfy the demand for information on the basic procedures for the safe handling and transfilling of small (not bulk) paintball CO2 cylinders commonly used with a paintball marker for propulsion of a paintball. This standard does not address issues dealing with the transfilling, storage, and handling of supply cylinders that may be used in transfilling smaller cylinders.1.2 The CO2 fill procedures are written for the pressure cycling cylinder transfilling method most commonly used by paintball field or store operators, or both.1.3 This practice should not be confused with federal, state, provincial, or municipal specifications or regulations; insurance requirements; or national safety codes.1.4 This practice does not purport to address all of the safety problems, if any, associated with the safe handling and transfilling of small paintball cylinders. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations, such as and not limited to DOT, CGA, and OSHA, prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is designed to produce transverse compressive property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors that influence the transverse compressive response and should therefore be reported are: material, method of material preparation, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, void content, and fiber volume fraction. Properties in the test direction that may be obtained from this test method are:5.1.1 Transverse compressive strength, σ22uc,5.1.2 Transverse compressive strain at failure, ε22uc,5.1.3 Transverse compressive modulus of elasticity, E22, and5.1.4 Poisson's ratio, γ21.1.1 This test method determines the transverse compressive properties of wound polymer matrix composites reinforced by high-modulus continuous fibers. It describes testing of hoop wound (90°) cylinders in axial compression for determination of transverse compressive properties.1.2 The technical content of this test method has been stable since 1993 without significant objection from its stakeholders. As there is limited technical support for the maintenance of this test method, changes since that date have been limited to items required to retain consistency with other ASTM D30 Committee standards, including editorial changes and incorporation of updated guidance on specimen preconditioning and environmental testing. The test method, therefore, should not be considered to include any significant changes in approach and practice since 1993. Future maintenance of the test method will only be in response to specific requests and performed only as technical support allows.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to produce transverse tensile property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors which influence the transverse tensile response and should, therefore, be reported are: material, methods of material preparation, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, void content, and fiber volume fraction. Properties, in the test direction, which may be obtained from this test method include: 5.1.1 Transverse Tensile Strength, 5.1.2 Transverse Tensile Strain at Failure, 5.1.3 Transverse Tensile Modulus of Elasticity, E22, and 5.1.4 Poisson's Ratio, υ21. 1.1 This test method determines the transverse tensile properties of wound polymer matrix composites reinforced by high-modulus continuous fibers. It describes testing of hoop wound (90°) cylinders in axial tension for determination of transverse tensile properties. 1.2 The technical content of this test method has been stable since 1993 without significant objection from its stakeholders. As there is limited technical support for the maintenance of this test method, changes since that date have been limited to items required to retain consistency with other ASTM D30 Committee standards, including editorial changes and incorporation of updated guidance on specimen preconditioning and environmental testing. The test method, therefore, should not be considered to include any significant changes in approach and practice since 1993. Future maintenance of the test method will only be in response to specific requests and performed only as technical support allows. 1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. 1.3.1 Within the text, the inch-pound units are shown in brackets. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is used for making test cylinders or prisms of PA concrete. Cylinders are used for determining compressive strength and approximate density. Prisms, cut from cylinders, eliminate the surface effect and thus more accurately represent the actual density of PA concrete in place.1.1 This practice covers procedures for making standard test cylinders used to determine the compressive strength and density of preplaced-aggregate (PA) concrete.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.21.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 LPG samples can change composition during storage and use from preferential vaporization of lighter (lower molecular weight) hydrocarbon components, dissolved inert gases (N2, Ar, He, and so forth) and other dissolved gases/liquids (NH3, CO2, H2S, H2O, etc.). Careful selection of cylinder type, cylinder volume, and use of inert gas for pressurizing cylinders is required to ensure that composition changes are small enough to maintain the integrity of LPG when used as a QC reference material for various LPG test methods.5.2 Monitoring of ongoing precision and bias on QC materials using control chart techniques in accordance with Practice D6299 can be used to establish the need for calibration or maintenance.1.1 This practice covers information for the storage and use of LPG samples in standard cylinders of the type used in sampling method, Practice D1265 and floating piston cylinders used in sampling method, Practice D3700.1.2 This practice is especially applicable when the LPG sample is used as a quality control (QC) reference material for LPG test methods, such as gas chromatography (GC) analysis (Test Method D2163) or vapor pressure (Test Method D6897) that use only a few mL per test, since relatively small portable Department of Transportation (DOT) cylinders (for example, 20 lb common barbecue cylinders, or common Mower/Forklift cylinders) can be used.1.2.1 Modification of the pressure relief (QCC1) valve on single access port cylinders may prohibit the collection or transport of cylinders outside of permitted facilities such as refineries, gas plants or pipeline stations. No modification is generally required for multi-port mower/forklift cylinders that have a separate access port for pressure relief and additional access ports for filling, liquid/vapor withdrawal or liquid level indication. Consult the Authority having Jurisdiction for detailed regional regulatory requirements for transport of LPG in pressurized cylinders.1.3 This practice can be applied to other test methods. However, test methods that require a large amount of sample per test (for example, manual vapor pressure Test Method D1267) will require QC volumes in excess of 1000 L if stored in standard DOT cylinders or American Society of Mechanical Engineers (ASME) vessels.1.3.1 Test methods for trace materials that may be sensitive to vessel surfaces (for example H2O, H2S/sulfur, or trace residues) could preferably use aluminum, stainless steel or internally coated vessels to minimize surface absorption/reaction or larger vessels to minimize surface/volume ratio.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers the male threaded connection used to connect a CO2 Control Valve or Compressed Gas Regulator with a normal working output pressure of 10 342 kPa (1800 psig) or less for use with a paintball marker to a DOT approved cylinder.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 By increasing the concrete temperature, the rate of hydration increases and a larger portion of the later-age properties of the concrete can be attained during the short curing period compared with standard temperature curing as described in Practice C31/C31M and Practice C192/C192M.5.2 Specimens subjected to accelerated curing can be used to estimate the later-age strength under standard-curing conditions by using this practice in conjunction with Test Method C918/C918M. The temperature history of the test specimens is recorded and the maturity index at the time of testing is calculated. Based on the measured maturity index and the early-age strength test results, the later age strength (such as at 28 days) under standard curing can be estimated from a previously established strength-maturity relationship for that concrete mixture. Thus accelerated curing procedures can provide, at the earliest practical time, an indication of the potential strength of the concrete sample. These early-age strength tests also provide information on the variability of the production process for use in quality control, so that necessary adjustments in mixture proportions can be made in a timely manner.5.3 The user shall select the procedure to use on the basis of experience and local conditions. These procedures, in general, will be practical if a field laboratory is available to house the curing containers and the testing equipment to measure compressive strength within the specified time limits.1.1 This practice covers two procedures for making and curing cylindrical specimens of concrete under conditions that increase the rate of hydration at early ages. The procedures are: A—Warm Water Method and B—Autogenous Curing Method.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.2)1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

This specification covers the requirements for laboratory glass graduated cylinders for precision and general purpose grades. The graduated cylinders may be in one of three styles; beaded lip with spout, grounded standard taper neck, or beaded lip with pour spout and reinforcing band near the top. The products should conform to the required cylinder and base shapes, dimensions, quality of gradation and identification markings, and length of gradation lines.1.1 This specification covers requirements for glass graduated cylinders for precision and general purpose grades suitable for laboratory purposes.1.1.1 Class A—Each cylinder of precision grade shall be marked with the letter “A” to signify compliance with applicable construction and accuracy requirements. Cylinders may be marked with an identification number (serial number) at the option of the manufacturer.1.1.2 Class B—General purpose cylinders are of the same basic design as Class A cylinders. However, volumetric tolerances for Class B cylinders shall be within twice the specified range allowed for Class A cylinders. These cylinders need not be marked with their class designation.1.1.3 Product with a stated capacity not listed in this standard may be specified in Class A tolerance when product conforms to the tolerance range of the next smaller volumetric standard product listed in Table 1.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification deals with molds for forming concrete test cylinders vertically. Molds shall be constructed in the form of right circular cylinders and have a nominal inside height equal to twice the nominal inside diameter. The following are types of molds covered: reusable molds and single-use molds. Reusable molds shall be made of nonabsorptive materials and shall be tested for water leakage. Single-use molds may be made of sheet metal, plastic, suitably treated paper products, or other materials. These materials shall conform to the following requirements: water leakage, absorptivity, and elongation. The following are additional requirements for the types of single-use molds: plastic mold—wall thickness, bottom design, and material; paper molds—side walls, bottom caps, and waterproofing; and sheet metal molds—metal thickness, bottom design, top edge, and coating. Test for elongation, absorption, and water leakage shall also be performed.1.1 This specification covers molds for use in forming cylindrical concrete specimens. The provisions of this specification include the requirements for both reusable and single-use molds.NOTE 1: Sizes included are molds having diameters from 50 mm [2 in.] to 900 mm [36 in.].1.2 The text of this standard refers to notes and footnotes that which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and the values from the two systems shall not be combined.1.4 The following safety hazards caveat pertains only to the test method described in this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This practice details the basic procedures for the safe handling and transfilling of small (not bulk) paintball compressed air cylinders commonly used with a paintball marker for propulsion of a paintball. It does not address issues related to the transfilling, storage, and handling of supply cylinders that may be used in transfilling smaller cylinders. Included herein are general safety considerations, requirements for fill stations, and compressed air/nitrogen fill procedures for the pressure cylinder transfilling method most commonly used by paintball fields or store operators, or both.1.1 This practice is intended to satisfy the demand for information on the basic procedures for the safe handling and transfilling of small (not bulk) paintball compressed air cylinders commonly used with a paintball marker for propulsion of a paintball. This standard does not address issues dealing with the transfilling, storage, and handling of supply cylinders that may be used in transfilling smaller cylinders.1.2 The compressed air fill procedures are written for the pressure cylinder transfilling method most commonly used by paintball field or store operators, or both.1.3 This document should not be confused with federal, state, provincial, or municipal specifications or regulations; insurance requirements; or national safety codes.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations, such as and not limited to DOT, CGA, and OSHA, prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
15 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页