微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Mixed oxide, a mixture of uranium and plutonium oxides, is used as a nuclear-reactor fuel in the form of pellets. The plutonium content may be up to 10 weight %, and the diluent uranium may be of any 235U enrichment. In order to be suitable for use as a nuclear fuel, the material must meet certain criteria for combined uranium and plutonium content, effective fissile content, and impurity content as described in Specification C833.4.1.1 The material is assayed for uranium and plutonium to determine whether the plutonium content is as specified by the purchaser, and whether the material contains the minimum combined uranium and plutonium contents specified on a dry weight basis.4.1.2 Determination of the isotopic content of the plutonium and uranium in the mixed oxide is made to establish whether the effective fissile content is in compliance with the purchaser's specifications.4.1.3 Impurity content is determined to ensure that the maximum concentration limit of certain impurity elements is not exceeded. Determination of impurities is also required for calculation of the equivalent boron content (EBC) as described in Practice C1233.4.2 Fitness for Purpose of Safeguards and Nuclear Safety Applications—Methods intended for use in safeguards and nuclear safety applications shall meet the requirements specified by Guide C1068 for use in such applications.1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade mixed oxides, (U, Pu)O2, powders and pellets to determine compliance with specifications.1.2 The analytical procedures appear in the following order:  SectionsUranium in the Presence of Pu by Potentiometric Titration   2Plutonium by Controlled-Potential Coulometry   2Plutonium by Amperometric Titration with Iron (II)   2Nitrogen by Distillation Spectrophotometry Using Nessler Reagent  8 to 15Carbon (Total) by Direct Combustion-Thermal Conductivity  16 to 26Total Chlorine and Fluorine by Pyrohydrolysis  27 to 34Sulfur by Distillation-Spectrophotometry  35 to 43Moisture by the Coulometric, Electrolytic Moisture Analyzer  44 to 51Isotopic Composition by Mass Spectrometry   3Rare Earths by Copper Spark Spectroscopy  52 to 59Trace Impurities by Carrier Distillation Spectroscopy  60 to 68Impurities by Spark-Source Mass Spectrography  69 to 75Total Gas in Reactor-Grade Mixed Dioxide Pellets    4Tungsten by Dithiol-Spectrophotometry  76 to 84Rare Earth Elements by Spectroscopy  85 to 88Plutonium-238 Isotopic Abundance by Alpha Spectrometry   5Americium-241 in Plutonium by Gamma-Ray SpectrometryUranium and Plutonium Isotopic Analysis by Mass Spectrometry  89 to 97Oxygen-to-Metal Atom Ratio by Gravimetry  98 to 1051.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (For specific safety precaution statements, see Sections 6, 13.2.5, 41.7, and 93.6.1.)

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 The dynamic interaction between the athlete and the surface is significant to the performance and comfort of the athlete. Therefore, the ability of the surface to deform under load is important. Too high a vertical deformation can affect the athlete through instability of the foot. Area elastic and combination elastic floors may be further characterized by evaluating the area deflection properties of the surface. Floors with low area deflection levels prevent or remove vibrations through damping mechanisms or design components.4.2 Vertical deformation is a widely used and recognized property of sports surfaces. Governing bodies, trade associations, and a number of international standards recognize the significance of vertical deformation. A partial list of these organizations includes: FIBA, MFMA, ASTM, EN. Even FIFA utilizes a variation of this property. Area deflection is still commonly specified within North America and one governing body (FIBA) and one trade association (MFMA) currently use this property to certify systems within the required testing for their performance programs.4.3 Vertical deformation and area deflection testing are performed with a Stuttgart Artificial Athlete (SAA) which can be created by slightly modifying the BAA (Berlin Artificial Athlete) from Test Method F2569. Laboratory experiments are to be conducted at the standard 23 ± 2°C (72 ± 4°F), but tests at additional temperatures may be performed at the request of the client. When evaluating the deflective properties of sports surfaces in the field, testing is to be conducted at the ambient temperature. Deviations from the standard temperature may cause significantly different performance levels.1.1 This method covers the quantitative measurement and normalization of deflections generated within a sports surface as an indication of the stability and comfort provided by the system.1.2 Vertical deformation provides a measure for the vertical motion generated within the sports surface system directly below the point of impact which has been normalized to a standard impact force.1.3 Area deflection provides a measure of the vibrations generated during an impact and their strength at a pre-determined distance from the point of impact.1.4 This method is not applicable to natural turf, synthetic turf or playground safety surfaces.1.5 This method is applicable to indoor and outdoor surfaces including but not limited to: wood and synthetic courts, walk/jog/run tracks, tennis courts, dance surfaces, aerobics and general fitness surfaces.1.6 The methods described are applicable in both laboratory and field settings.1.7 Area deflection testing is optional, and only applicable to area-elastic, combined elastic and mixed elastic sport surfaces. These include wood surfaces, synthetic surfaces on a sprung wood subfloor, and point elastic surfaces with an internal area elastic component.1.8 The values stated in SI units are to be regarded as standard. Units provided in parenthesis are informational only.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The aniline point (or mixed aniline point) is useful as an aid in the characterization of pure hydrocarbons and in the analysis of hydrocarbon mixtures. Aromatic hydrocarbons exhibit the lowest, and paraffins the highest values. Cycloparaffins and olefins exhibit values that lie between those for paraffins and aromatics. In homologous series the aniline points increase with increasing molecular weight. Although it occasionally is used in combination with other physical properties in correlative methods for hydrocarbon analysis, the aniline point is most often used to provide an estimate of the aromatic hydrocarbon content of mixtures.1.1 These test methods cover the determination of the aniline point of petroleum products and hydrocarbon solvents. Test Method A is suitable for transparent samples with an initial boiling point above room temperature and where the aniline point is below the bubble point and above the solidification point of the aniline-sample mixture. Test Method B, a thin-film method, is suitable for samples too dark for testing by Test Method A. Test Methods C and D are for samples that may vaporize appreciably at the aniline point. Test Method D is particularly suitable where only small quantities of sample are available. Test Method E describes a procedure using an automatic apparatus suitable for the range covered by Test Methods A and B.1.2 These test methods also cover the determination of the mixed aniline point of petroleum products and hydrocarbon solvents having aniline points below the temperature at which aniline will crystallize from the aniline-sample mixture.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Section 7.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the standards for plants suitable for producing hot-mixed, hot-laid bituminous paving mixtures. The plant shall be able to uniformly combine and mix different sizes of aggregate from stockpiles, reclaimed asphalt pavement and bituminous material. This specification shall also describe the various components of batch, continuous mix, and drum mix plants. This standard can also be used to evaluate existing plants. This specification however does not cover plant operation and control or mixture production.1.1 This specification covers requirements for plants suitable for producing hot-mixed, hot-laid bituminous paving mixtures.1.2 The values stated in inch-pound units are to be regarded as the standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is applicable to the analysis of new materials that are sold as mixtures and to samples taken from regenerable units containing mixtures of anion-exchanging and cation-exchanging materials. It is used to determine the ratio of the components without separating them from each other.5.2 This test method is intended for mixtures of ion-exchange materials that have salt-splitting capacity as measured by Test Method E of Test Methods and Practices D2187 for cation-exchange resins, and Test Method H for anion-exchange resins. In the case of cation-exchange resins, these are styrene-based polymers with sulfonic acid functional groups. The anion-exchanging materials in this class are styrene-based materials with quaternary ammonium functional groups. The test method will determine the amount of anion-exchange material of any functionality present in the mixture. However, when anionic groups that are not salt-splitting are present, the values for cationic groups will be high due to the acidic character of the anion effluent. Cationic groups that do not split salts are not measured.5.3 Samples are analyzed in this test method as received. It is not necessary that the cation-exchanging resin be in the hydrogen form and the anion-exchanging resin be in the hydroxide form for this test method.5.4 This test method may be used to determine if new materials are balanced to meet their specification values. In operating regenerable units, it may be used to determine if the components are separating properly or remixing properly. It may also be used to check for improper balance in bedding or for loss of a component during operation.5.5 This test method begins with the conversion to the hydrogen and chloride forms. However, it may be combined with the determination of the residual chloride and sulfate sites by elution with sodium nitrate as described in Test Methods J and L in Test Methods and Practices D2187. In such cases the hydrogen ion as well as the chloride ion is determined in the second sodium nitrate elution described in Test Method I of Test Methods and Practices D2187, and the calculations given herein are made using the titration values so determined.1.1 This test method determines the ratio between the equivalents of anion-exchange capacity and the equivalents of cation-exchange capacity present in a physical mixture of salt-splitting anion-exchange material and salt-splitting cation-exchange material.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This practice covers estimating the consistency of thermal insulating cements, after mixing with a known amount of water. The consistency of a wet cement affects such properties as ease of toweling, wet adhesion, drying shrinkage, dry density, and thermal conductivity. 1.2 This practice estimates consistency of thermal insulating cements in terms of either percentage of deformation as described in Method A or inches of penetration as described in Method B. 1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method can be used to evaluate unused mixed bed ion exchange materials for conformance to specifications. When a representative sample of the mixed bed can be obtained from an operating unit, this test method can be used to evaluate the regeneration efficiency by comparison with the same data obtained with new material from the same manufactured lots, or retained samples of the in-place products.5.2 This test method provides for the calculation of capacity in terms of the volume of water treated to a conductivity end point.5.3 The test method as written assumes that the cation exchange material has been regenerated to the hydrogen form with acid and the anion exchange material has been regenerated with alkali to the hydroxide or free-base form. In certain applications a cation exchange material in the potassium, ammonium, or other monovalent form may be encountered. Such materials may be tested following this procedure using Test Water A (Test Methods D1782) as the influent and substituting the hardness end point (Test Methods D1782) for the end points prescribed herein.5.4 In most cases the product tested will be properly mixed and will contain the correct proportions of anion and cation exchange materials. However, if the pH as well as the conductivity of the effluent is measured, the test method will indicate which of the components is present in excess; an acid effluent at breakthrough indicating an excess of regenerated cation exchange groups and an alkaline effluent an excess of regenerated anion exchange groups. In such cases the volumes of the two components obtained in the final backwash will indicate whether this imbalance arises from improper regeneration or from an improper ratio of the two components. It should be noted, however, that not all units are charged with a balanced ratio of anion-exchanging and cation-exchanging groups. Hence, wherever possible, a field sample should be evaluated in comparison with a retained sample of the original charge.5.5 This test method provides for the calculation of capacity on either a wet weight basis or a volume basis. Although such materials are normally bought and sold in terms of cubic feet, they are actually packaged in wet pounds. Therefore, it is the capacity on a wet weight basis that is directly correlatable to the amount of material in a given shipment.5.6 Calculation of a volume capacity is based on the exhausted, separated volume of the components after backwashing and resettling the bed. This volume is chosen because it is difficult, if not impossible, to pack a sample of regenerated mixed bed material in a small-diameter column reproducibly.5.7 This test method may be used to test mixed bed resin cartridges. In such cases the flow rate of test water and the frequency of sampling must be varied to compensate for the approximate volume of resin in the test sample. The test as written assumes a resin volume of approximately 330 mL.1.1 This test method covers the determination of the performance of particulate mixed bed ion exchange materials in the regenerated form when used for deionization. It is intended for use in testing unused mixed bed materials and samples of regenerated mixed beds from operating units.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers requirements for returned fresh concrete for use in a new batch of ready-mixed concrete, as well as the requirements specified by the purchaser. If the requirements of the purchaser differ from those prescribed in this specification, the purchaser's requirements shall take precedence. This specification does not cover the placement, consolidation, curing, or protection of the concrete after delivery to the purchaser, and by itself shall not grant permission to the manufacturer to use returned fresh concrete in a new batch of concrete.This specification covers: ordering information; measuring materials; requirements for use; and information to be reported by the manufacturer to the purchaser, such as the amount of returned fresh concrete in cubic meters [cubic yards] and information for certification purposes as designated by the purchaser and required by the job specifications.1.1 This specification covers returned fresh concrete for use in a new batch of ready-mixed concrete. Requirements for returned fresh concrete shall be either as hereinafter specified or as specified by the purchaser. In any case where the requirements of the purchaser differ from those in this specification, the purchaser’s requirements shall govern. This specification does not cover the placement, consolidation, curing, or protection of the concrete after delivery to the purchaser.1.2 This specification by itself shall not grant permission to the manufacturer to use returned fresh concrete in a new batch of concrete.NOTE 1: The permission to use returned fresh concrete may be addressed in purchase documents, which may reference this specification.1.3 Returned fresh concrete in a quantity of less than 450 kg [1000 lb] or 0.2 m3 [0.25 yd3] shall not be subject to this specification.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5 The text of this standard references notes and footnotes, which provide explanatory information. These notes and footnotes shall not be considered as requirements of the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged use.2)1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 MOX is used as a nuclear-reactor fuel. This test method is designed to determine whether the O/M ratio meets the requirements of the fuel specification. Examples for establishing a fuel specification are given in Specification C833.5.2 This method is suitable for all sintered MOX pellets containing up to 12 weight % PuO2 when the UO2 and PuO2 meet the requirements of Specifications C753 and C757.1.1 This practice is an alternative method to Test Method C698 for the determination of the oxygen-to-metal atom ratio (O/M) in sintered mixed oxide fuel (MOX) pellets. The method presented in Test Method C698 is a one-step thermogravimetric method for determining O/M ratio in sintered MOX powders and pellets. As stated in Test Method C698, thermogravimetric methods using a two-step heating cycle are also satisfactory (1, 2).2 The method presented in this test method is a two-step heating cycle method. This test method is applicable to sintered MOX pellets containing up to 10 weight percent PuO2.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test is useful for classifying the curing and formulation of cold-mixed emulsified asphalt samples through ravel testing of compacted specimens. This performance test should be used to rank the mix conditions and approximate curing time for return to traffic and resistance to weather damage.NOTE 1: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method measures the resistance to raveling characteristics of emulsified asphalt and field aggregates or recycled asphalt pavement (RAP) mixtures by simulating an abrasion similar to early return to traffic.1.2 A precision and bias statement for this standard has not been developed at this time. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purposes.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Electronic devices are typically tested for device response to gamma radiation in pure gamma-ray fields. Testing electronic device response against neutrons is more complex since there is invariably a gamma-ray component in addition to the neutron field. The gamma-ray response of the electronic device is typically subtracted from the overall response to find the device response to neutrons. This approach to the testing requires a determination of the gamma-ray exposure in the mixed field. To enhance the neutron effects, the radiation field is sometimes selected to have as large a neutron component as possible.4.2 CaF2(Mn) TLDs are often used to monitor the gamma-ray dose in mixed neutron/gamma radiation fields. Since the dosimeters are exposed along with the device under test to the mixed field, their response must be corrected for neutrons. In a field rich in neutrons, the uncertainty in the interpretation of the TLD response grows. In fields with relatively few neutrons, the total TLD response may be used to make a correction for gamma response of the device under test. Under this condition, the relative uncertainty in the TLD neutron response is not likely to drive the overall uncertainty in the correction to the electronic device response.4.3 This practice gives a means of estimating the response of CaF2(Mn) TLDs to neutrons. This neutron response is then subtracted from the measured response to determine the TLD response due to gamma rays. The procedure has relatively high uncertainty because the neutron response of CaF2(Mn) TLDs may vary depending on the source of the material, and this procedure is a generic calculation applicable to CaF2(Mn) TLDs independent of their manufacturer/source. The neutron response given in this practice is a summary of CaF2(Mn) TLD responses reported in the literature. The associated uncertainty envelops the range of results reported and includes the variety of CaF2(Mn) TLDs used as well as the uncertainties in the determination of the neutron response as reported by various authors.4.4 Should the user find the resulting uncertainties too large for his purposes, the neutron response of the CaF2(Mn) TLDs in use during the irradiations must be determined. This practice does not supply guidance on how to determine the neutron response of a specific batch of TLDs.4.5 Neutron effects on electronics under test are usually reported in terms of 1-MeV(Si) equivalent fluence (Practice E722). Neutron effects of TLDs, as discussed here, are reported in units of absorbed dose, since they are corrections to the gamma-ray dose.1.1 This practice describes a procedure for correcting a CaF2(Mn) thermoluminescence dosimeter (TLD) reading for its response to neutrons during the irradiation. The neutron response may be subtracted from the total TLD response to give the gamma-ray response. In fields with a large neutron contribution to the total response, this procedure may result in large uncertainties.1.2 More precise experimental techniques may be applied if the uncertainty derived from this practice is larger than the level that the user can accept. These more precise techniques are not discussed here. The references in Section 8 describe some of these techniques.1.3 This practice does not discuss effects on the TLD reading from neutron interactions with the material surrounding the TLD and used to ensure a charged particle equilibrium. These effects will depend on the isotopic composition of the surrounding material and its thickness, and on the incident neutron spectrum (1).21.4 The values stated in SI units are to be regarded as standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 These test methods provide data useful for evaluating the chemical durability (see 3.1.5) of glass waste forms as measured by elemental release. Accordingly, it may be applicable throughout manufacturing, research, and development.5.1.1 Test Method A can specifically be used to obtain data to evaluate whether the chemical durability of glass waste forms have been consistently controlled during production (see Table 1).5.1.2 Test Method B can specifically be used to measure the chemical durability of glass waste forms under various test conditions, for example, varying test durations, test temperatures, sample surface area (SA)-to-leachant volume (V) ratios (see Appendix X1), and leachant types (see Table 1). Data from this test may form part of the larger body of data that are necessary in the logical approach to long-term prediction of waste form behavior (see Practice C1174).1.1 These product consistency Test Methods A and B provide a measure of the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, multiphase glass ceramic waste forms, or combinations thereof, hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution under carefully controlled conditions.1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2 °C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. The stainless steel vessels require a gasket to remain leak-tight (see Note 1) The stainless steel vessels are considered to be “closed system” tests. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above.NOTE 1: TFE-fluorocarbon gaskets, available commercially, are acceptable and chemically inert up to radiation doses of 1 × 105 R of beta or gamma radiation which have been shown not to damage TFE-fluorocarbon. If higher radiation doses are anticipated, special gaskets fabricated from metals such as copper, gold, lead, or indium are recommended.1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, particle size and masses of glass sample, leachant volumes, and leachant compositions. This test method is static and can be conducted in stainless steel or PFA TFE-fluorocarbon vessels. The stainless steel vessels are considered to be “closed system” while the PFA TFE-fluorocarbon vessels are considered to be “open system” tests. Test Method B can specifically be used to evaluate the relative chemical durability characteristics of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, or multiphase glass ceramic waste forms, or combinations thereof. This test method is applicable to radioactive (nuclear) and mixed, hazardous, and simulated glass waste forms as defined above. Test Method B cannot be used as a consistency test for production of high level radioactive glass waste forms.1.2 These test methods must be performed in accordance with all quality assurance requirements for acceptance of the data.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 Susceptibility to delamination is one of the major weaknesses of many advanced laminated composite structures. Knowledge of the interlaminar fracture resistance of composites is useful for product development and material selection. Since delaminations can be subjected to and extended by loadings with a wide range of mode mixtures, it is important that the composite toughness be measured at various mode mixtures. The toughness contour, in which fracture toughness is plotted as a function of mode mixtures (see Fig. 3), is useful for establishing failure criterion used in damage tolerance analyses of composite structures made from these materials.FIG. 3 Mixed-Mode Summary Graph5.2 This test method can serve the following purposes:5.2.1 To establish quantitatively the effects of fiber surface treatment, local variations in fiber volume fraction, and processing and environmental variables on Gc of a particular composite material at various mode mixtures,5.2.2 To compare quantitatively the relative values of Gc versus mode mixture for composite materials with different constituents, and5.2.3 To develop delamination failure criteria for composite damage tolerance and durability analyses.5.3 This method can be used to determine the following delamination toughness values:5.3.1 Delamination Initiation—Two values of delamination initiation shall be reported: (1) at the point of deviation from linearity in the load-displacement curve (NL) and (2) at the point at which the compliance has increased by 5 % or the load has reached a maximum value (5%/max) depending on which occurs first along the load deflection curve (see Fig. 4). Each definition of delamination initiation is associated with its own value of Gc and GII/G calculated from the load at the corresponding critical point. The 5%/Max Gc value is typically the most reproducible of the three Gc values. The NL value is, however, the more conservative number. When the option of collecting propagation values is taken (see 5.3.2), a third initiation value may be reported at the point at which the delamination is first visually observed to grow on the edge of the specimen. The VIS point often falls between the NL and the 5%/Max points.FIG. 4 Load-Displacement Curves5.3.2 Propagation Option—In the MMB test, the delamination will grow from the insert in either a stable or an unstable manner depending on the mode mixture being tested. As an option, propagation toughness values may be collected when delaminations grow in a stable manner. Propagation toughness values are not attainable when the delamination grows in an unstable manner. Propagation toughness values may be heavily influenced by fiber bridging which is an artifact of the zero-degree-type test specimen (3-5). Since they are often believed to be artificial, propagation values must be clearly marked as such when they are reported. One use of propagation values is to check for problems with the delamination insert. Normally, delamination toughness values rise from the initiation values as the delamination propagates and fiber bridging develops. When toughness values decrease as the delamination grows, a poor delamination insert is often the cause. The delamination may be too thick or deformed in such a way that a resin pocket forms at the end of the insert. For accurate initiation values, a properly implanted and inspected delamination insert is critical (see 8.2).5.3.3 Precracked Toughness—Under rare circumstances, toughness may decrease from the initiation values as the delamination propagates (see 5.3.2). If this occurs, the delamination should be checked to ensure that it complies with the insert recommendations found in 8.2. Only after verifying that the decreasing toughness was not due to a poor insert, should precracking be considered as an option. With precracking, a delamination is first extended from the insert in Mode I, Mode II, or mixed mode. The specimen is then reloaded at the desired mode mixture to obtain a toughness value.1.1 This test method covers the determination of interlaminar fracture toughness, Gc, of continuous fiber-reinforced composite materials at various Mode I to Mode II loading ratios using the Mixed-Mode Bending (MMB) Test.1.2 This test method is limited to use with composites consisting of unidirectional carbon fiber tape laminates with brittle and tough single-phase polymer matrices. This test method is further limited to the determination of fracture toughness as it initiates from a delamination insert. This limited scope reflects the experience gained in round robin testing. This test method may prove useful for other types of toughness values and for other classes of composite materials; however, certain interferences have been noted (see Section 6). This test method has been successfully used to test the toughness of both glass fiber composites and adhesive joints.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 A standard test is necessary to establish a behavior pattern for spilled crude oils or petroleum products at different oil weathering stages.4.2 Water-in-oil mixtures vary with oil type and oil conditions such as weathering. Results from this test method form a baseline, and usually are a measure of behavior at sea.4.3 This test has been developed over many years using standardized equipment, test procedures, and to overcome difficulties noted in other test procedures.4.4 This test should be performed at the temperatures and degrees of weathering corresponding to the spill conditions of interest.1.1 This test method covers a procedure to determine the water-in-oil emulsification tendencies and stabilities of crude oils and petroleum products in the laboratory. The results of this test method can provide oil behavior data for input into oil spill models.1.2 This test method covers a specific method of determining emulsion tendencies and does not cover other procedures that may be applicable to determining emulsion tendencies.1.3 The test results obtained using this test method are intended to provide baseline data for the behavior of oil and petroleum products at sea and input to oil spill models.1.4 The test results obtained using this test method can be used directly to predict certain facets of oil spill behavior or as input to oil spill models.1.5 The accuracy of the test method depends very much on the representative nature of the oil sample used. Certain oils can form a variety of water-in-oil types depending on their chemical contents at the moment a sample is taken. Other oils are relatively stable with respect to the type formed1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Sulfuric acid is used in the manufacture of fertilizer, explosives, dyestuffs, other acids, parchment paper, glue, lead acid batteries, textiles, etc., and in the pickling of metals.5.2 This test method has been found to be satisfactory in the measurement of sulfuric acid for comparison with relevant occupational exposure limits.NOTE 2: In some countries the occupational exposure limit value (OELV) for sulfuric acid is related to the thoracic aerosol fraction; in such cases it is recommended to use a sampler for the thoracic aerosol fraction (ISO 20581).61.1 This ion chromatographic test method describes the determination of sulfuric acid mist in air samples collected from workplace atmospheres on a mixed cellulose ester (MCE) filter.NOTE 1: Other filter types such as quartz fiber, polytetrafluoroethylene (PTFE), and polyvinyl chloride (PVC) filters are also suitable.1.2 The lower detection limit of this test method is 0.001 mg/sample or 0.017 mg/m3 of sulfuric acid (H2SO4) mist in 60 L of air sampled at 1 L/min.1.3 This test method is subject to interference from soluble and partially soluble sulfate salts. Other sulfur-containing compounds can be oxidized to sulfate and also interfere.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 No detailed instrument operating instructions are provided because of differences among various makes and models of ion chromatography (IC) systems. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument, analytical column, and suppressors used.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 9.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
55 条记录,每页 15 条,当前第 3 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页