微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 975元 / 折扣价: 829 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏

定价: 819元 / 折扣价: 697 加购物车

在线阅读 收 藏

4.1 This test method can be used to determine particle size distributions for material specifications, manufacturing control, and research and development work in the particle size range usually encountered in fluidizable cracking catalysts.1.1 This test method covers the determination of particle size distribution of catalyst and catalyst carrier particles using an electroconductive sensing method and is one of several valuable methods for the measurement of particle size.1.2 The range of particle sizes investigated was 20 to 150 μm (see IEEE/ASTM SI 10) equivalent spherical diameter. The technique is capable of measuring particles above and below this range. The instrument used for this method is an electric current path of small dimensions that is modulated by individual particle passage through an aperture, and produces individual pulses of amplitude proportional to the particle volume.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This guide serves three purposes:4.1.1 To serve as a guide for developers of computer software providing, or interacting with, electronic signature processes,4.1.2 To serve as a guide to healthcare providers who are implementing electronic signature mechanisms, and4.1.3 To be a consensus standard on the design, implementation, and use of electronic signatures.1.1 This guide covers:1.1.1 Defining a document structure for use by electronic signature mechanisms (Section 4),1.1.2 Describing the characteristics of an electronic signature process (Section 5),1.1.3 Defining minimum requirements for different electronic signature mechanisms (Section 5),1.1.4 Defining signature attributes for use with electronic signature mechanisms (Section 6),1.1.5 Describing acceptable electronic signature mechanisms and technologies (Section 7),1.1.6 Defining minimum requirements for user identification, access control, and other security requirements for electronic signatures (Section 9), and1.1.7 Outlining technical details for all electronic signature mechanisms in sufficient detail to allow interoperability between systems supporting the same signature mechanism (Section 8 and Appendix X1-Appendix X4).1.2 This guide is intended to be complementary to standards under development in other organizations. The determination of which documents require signatures is out of scope, since it is a matter addressed by law, regulation, accreditation standards, and an organization's policy.1.3 Organizations shall develop policies and procedures that define the content of the medical record, what is a documented event, and what time constitutes event time. Organizations should review applicable statutes and regulations, accreditation standards, and professional practice guidelines in developing these policies and procedures.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification deals with molybdenum wire and rod for electronic applications. The following grades of molybdenum wire and rod are covered in this specification: Grade 1—commercially pure molybdenum wire suitable for leads, hooks, supports, heaters, and metal-to-glass seals; Grade 2—commercially pure molybdenum wire suitable for mandrel either black or cleaned; and Grade 3—commercially pure molybdenum rod suitable for leads, hooks, supports, and metal-to-glass seals. Materials shall be tested and the individual grades shall conform to specified values of chemical composition, minimum tensile strength, elongation, ductility, surface finish, dimensional tolerances, and straightness.1.1 This specification covers two grades of molybdenum wire less than 0.050 in. (1.27 mm) in diameter and one grade of molybdenum rod 1.00 in. (25.4 mm) or less in diameter as follows:1.1.1 Grade 1—Commercially pure molybdenum wire suitable for leads, hooks, supports, heaters, and metal-to-glass seals.1.1.2 Grade 2—Commercially pure molybdenum wire suitable for mandrel either black or cleaned.1.1.3 Grade 3—Commercially pure molybdenum rod suitable for leads, hooks, supports, and metal-to-glass seals.1.2 The term wire applies to all spooled or coiled material and 0.050 in. (1.3 mm) or less in diameter and to short cut lengths 0.020 in. (0.51 mm) or less in diameter.1.3 The term rod applies to all material over 0.020 in. (0.51 mm) in diameter, supplied in straight lengths.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice describes procedures applicable to both shop and field conditions. More comprehensive or precise measurements of the characteristics of complete systems and their components will generally require laboratory techniques and electronic equipment such as oscilloscopes and signal generators. Substitution of these methods is not precluded where appropriate; however, their usage is not within the scope of this practice.5.2 This document does not establish system acceptance limits, nor is it intended as a comprehensive equipment specification.5.3 While several important characteristics are included, others of possible significance in some applications are not covered.5.4 Since the parameters to be evaluated and the applicable test conditions must be specified, this practice shall be prescribed only by those familiar with ultrasonic NDT technology and the required tests shall be performed either by such a qualified person or under his supervision.5.5 Implementation may require more detailed procedural instructions in the format of the using facility.5.6 In the case of evaluation of a complete system, selection of the specific tests to be made should be done cautiously; if the related parameters are not critical in the intended application, then their inclusion may be unjustified. For example, vertical linearity may be irrelevant for a go/no-go test with a flaw gate alarm, while horizontal linearity might be required only for accurate flaw-depth or thickness measurement from the display screen.5.7 No frequency of system evaluation or calibration is recommended or implied. This is the prerogative of the using parties and is dependent on application, environment, and stability of equipment.5.8 Certain sections are applicable only to instruments having receiver gain controls calibrated in decibels (dB). While these may sometimes be designated “gain,” “attenuator,” or “sensitivity” on various instruments, the term “gain controls” will be used in this practice in referring to those which specifically control instrument receiver gain but not including reject, electronic distance-amplitude compensation, or automatic gain control.5.9 These procedures can generally be applied to any combination of instrument and search unit of the commonly used types and frequencies, and to most straight-beam examination, either contact or immersed. Certain sections are also compatible with angle-beam, wheel, delay-line, and dual-search unit techniques. Their use, however, should be mutually agreed upon and so identified in the test report.5.10 The validity of the results obtained will depend on the precision of the instrument display readings. This is assumed to be ±0.04 in. (±1 mm), yielding between 1 % and 2 % of full scale (fs) readability for available instrumentation having suitable screen graticules and display sharpness.1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in Guide E1324.1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated.1.3 The procedures are applicable to shop or field conditions; additional electronic measurement instrumentation is not required.1.4 This practice establishes no performance limits for examination systems; if such acceptance criteria are required, these must be specified by the using parties. Where acceptance criteria are implied herein, they are for example only and are subject to more or less restrictive limits imposed by customer's and end user's controlling documents.1.5 The specific parameters to be evaluated, conditions and frequency of test, and report data required must also be determined by the user.1.6 This practice may be used for the evaluation of a complete examination system, including search unit, instrument, interconnections, fixtures and connected alarm and auxiliary devices, primarily in cases where such a system is used repetitively without change or substitution. This practice is not intended to be used as a substitute for calibration or standardization of an instrument or system to inspect any given material. There are limitations to the use of standard reference blocks for that purpose.21.7 Required test apparatus includes selected test blocks and a precision external attenuator (where specified) in addition to the instrument or system to be evaluated.1.8 Precautions relating to the applicability of the procedures and interpretation of the results are included.1.9 Alternate procedures, such as examples described in this document, or others, may only be used with customer approval.1.10 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers thermoset plastics based on diglycidyl ethers of bisphenol A and amino functional curing agents or amine catalysts for implantable epoxy electronic encapsulants. Encapsulants shall be classified depending on contact with tissues or physiological fluids. Chemical composition requirements may include additives, phthalate esters, amines, catalysts, and carbonates. The material shall be tested for the following physical properties: peak exotherm temperature, transparency, foreign particles, USP biological test plastic containers, USP pyrogen test, sterilant residues, cure shrinkage, embedment stress, tissue culture test, long-term immersion test, and accelerated immersion test. The material shall also be inspected with infrared spectroscopy, amine number, epoxide equivalent weight, spectrographic analysis, and total nitrogen.1.1 This specification covers thermoset plastics based on diglycidyl ethers of bisphenol A and amino functional curing agents or amine catalysts.1.2 The epoxy encapsulants covered by this specification are intended to provide a tissue-compatible protective covering for implantable medical devices such as pulse generators, telemetry devices, and RF receivers. The biocompatibility of epoxy plastics has not been established. Epoxy plastic is a generic term relating to the class of polymers formed from epoxy resins, certain curing agents or catalysts, and various additives. Since many compositions and formulations fall under this category, it is essential that the fabricator ensure safety of implantability of the specific composition or formulation for the intended use by current state-of-the-art test methods. This specification can be used as a basis for standardized evaluation of biocompatibility for such implantable encapsulants.1.3 The encapsulants covered by this specification are for use in devices intended as long-term implants.1.4 Limitations—This specification covers only the initial qualification of epoxy encapsulants for implantable electronic circuitry. Some of the requirements are not applicable to routine lot-to-lot quality control.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers high purity titanium sputtering targets for use as raw material in the fabrication of semiconductor electronic thin films. Material covered by this specification comprises Grades 4N, 4N5, and 5N titanium sputtering targets, the grades of which are based on the total metallic impurity content. The target shall be manufactured free of any contaminates such as dirt or oils and with average and maximum grain sizes in conformity with the requirements specified. The target shall be analyzed for trace metallic impurities, carbon, oxygen, sulfur, nitrogen, and hydrogen and shall conform to the grade requirements and the acceptable and minimum detection limits specified.1.1 This specification covers pure titanium sputtering targets used as a raw material in fabricating semiconductor electronic devices.1.2 This standard sets purity grade levels, physical attributes, analytical methods, and packaging.1.2.1 The grade designation is a measure of total metallic impurity content. The grade designation does not necessarily indicate suitability for a particular application because factors other than total metallic impurity may influence performance.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is intended for application in the semiconductor industry for evaluating the purity of materials (for example, sputtering targets, evaporation sources) used in thin film metallization processes. This test method may be useful in additional applications, not envisioned by the responsible technical committee, as agreed upon between the parties concerned.5.2 This test method is intended for use by GDMS analysts in various laboratories for unifying the protocol and parameters for determining trace impurities in pure titanium. The objective is to improve laboratory to laboratory agreement of analysis data. This test method is also directed to the users of GDMS analyses as an aid to understanding the determination method, and the significance and reliability of reported GDMS data.5.3 For most metallic species the detection limit for routine analysis is on the order of 0.01 weight ppm. With special precautions detection limits to sub-ppb levels are possible.5.4 This test method may be used as a referee method for producers and users of electronic-grade titanium materials.1.1 This test method covers the determination of concentrations of trace metallic impurities in high purity titanium.1.2 This test method pertains to analysis by magnetic-sector glow discharge mass spectrometer (GDMS).1.3 The titanium matrix must be 99.9 weight % (3N-grade) pure, or purer, with respect to metallic impurities. There must be no major alloy constituent, for example, aluminum or iron, greater than 1000 weight ppm in concentration.1.4 This test method does not include all the information needed to complete GDMS analyses. Sophisticated computer-controlled laboratory equipment skillfully used by an experienced operator is required to achieve the required sensitivity. This test method does cover the particular factors (for example, specimen preparation, setting of relative sensitivity factors, determination of sensitivity limits, etc.) known by the responsible technical committee to effect the reliability of high purity titanium analyses.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
177 条记录,每页 15 条,当前第 1 / 12 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页