微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

5.1 This test method is one of a number of tests conducted on heavy hydrocarbon mixtures to characterize these materials for a refiner or a purchaser. It provides an estimate of the yields of fractions of various boiling ranges.5.2 The fractions made by this test method can be used alone or in combination with other fractions to produce samples for analytical studies and quality evaluations.5.3 Residues to be used in the manufacture of asphalt can also be made but may not always be suitable. The long heat soaking that occurs in this test method may alter some of the properties.NOTE 1: While the practice of reblending distillates with residue can be done to produce a lighter residue, it is not recommended because it produces blends with irregular properties.5.4 Details of cutpoints must be mutually agreed upon before the test begins.5.5 This is a complex procedure involving many interacting variables. It is most important that at the time of first use of a new apparatus, its components be checked as detailed in Annex A1 and Annex A2 and that the location of the vapor temperature sensor be verified as detailed in 6.5.3 and Fig. 1.1.1 This test method covers the procedure for distillation of heavy hydrocarbon mixtures having initial boiling points greater than 150 °C (300 °F), such as heavy crude oils, petroleum distillates, residues, and synthetic mixtures. It employs a potstill with a low pressure drop entrainment separator operated under total takeoff conditions. Distillation conditions and equipment performance criteria are specified and typical apparatus is illustrated.1.2 This test method details the procedures for the production of distillate fractions of standardized quality in the gas oil and lubricating oil range as well as the production of standard residue. In addition, it provides for the determination of standard distillation curves to the highest atmospheric equivalent temperature possible by conventional distillation.1.3 The maximum achievable atmospheric equivalent temperature (AET) is dependent upon the heat tolerance of the charge. For most samples, a temperature up to 565 °C (1050 °F) can be attained. This maximum will be significantly lower for heat sensitive samples (for example, heavy residues) and might be somewhat higher for nonheat sensitive samples.1.4 The recommended distillation method for crude oils up to cutpoint 400 °C (752 °F) AET is Test Method D2892. This test method can be used for heavy crude oils with initial boiling points greater than 150 °C (302 °F). However, distillation curves and fraction qualities obtained by these methods are not comparable.1.5 This test method contains the following annexes:1.5.1 Annex A1—Test Method for Determination of Temperature Response Time,1.5.2 Annex A2—Practice for Calibration of Sensors,1.5.3 Annex A3—Test Method for Dehydration of a Wet Sample of Oil,1.5.4 Annex A4—Practice for Conversion of Observed Vapor Temperature to Atmospheric Equivalent Temperature (AET), and1.5.5 Annex A5—Test Method for Determination of Wettage.1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warnings, see 6.5.4.2, 6.5.6.3, 6.9.3, 9.5, 9.7, and A2.3.1.3.1.8 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers the requirements for low silicate ethylene glycol base engine coolants for cooling systems of heavy-duty engines. Such engines are typically used in off-highway machinery for agriculture, mining, earth-moving, and construction; Class 5 to 8 over the road trucks and buses; high output stationary engine installations; and locomotive and marine installations. Prediluted coolants shall be prepared using deionized Ethylene glycol base engine coolant concentrates or prediluted ethylene glycol base engine coolants shall be formulated with ethylene glycol. The coolants shall conform to the prescribed physical, chemical, and performance requirements, which include relative density, freezing point, boiling point, ash content, pH, reserve alkalinity, water content, chloride ion content, silicon content, corrosion in glassware, simulated service test, foaming, and cavitation. The color and effect of nonmetals of the coolant shall be evaluated. Prediluted coolant shall also meet the required content of sulfate and iron. Its CaCO3 content shall be tested to determine its hardness.1.1 This specification covers the requirements for low silicate ethylene glycol base engine coolants for cooling systems of heavy-duty engines. When concentrates are used at 40 % to 60 % concentration by volume in water, or when prediluted glycol base engine coolants (50 volume % minimum) are used without further dilution, they will function effectively to provide protection against corrosion, freezing to at least −36.4 °C (−33.5 °F), and boiling to at least 108 °C (226 °F).NOTE 1: This specification is based on the knowledge of the performance of engine coolants prepared from new or virgin ingredients. A separate specification exists (Specification D6210) for heavy-duty engine coolants which may be prepared from recycled or reprocessed used coolant or reprocessed industrial-source ethylene glycol.1.2 Coolants meeting this specification require an initial charge of a supplemental coolant additive (SCA) and require regular maintenance doses of an SCA to continue the protection in certain operating heavy-duty engine cooling systems, particularly those of the wet cylinder liner-in-block design. The SCA additions are defined by and are the primary responsibility of the engine manufacturer or vehicle manufacturer. If they provide no instructions, follow the SCA supplier's recommended instructions.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

This specification covers cast alloy steels in the normalized and tempered or quenched and tempered condition, suitable for high strain gradient conditions. One test block for each heat is required. The test block configuration and size are specified. Tension and Charpy impact tests and oxygen, nitrogen, and hydrogen gas content tests shall be performed. The steel shall be made by electric furnace process with methods, such as argon-oxygen-decarburization, to conform to the maximum gas level. Heat treatment procedure shall be done. Multiple austenitizing and tempering are permitted. The chemistry grade shall conform to the required chemical composition for carbon, manganese, phosphorus, sulfur, silicon, nickel, chromium, molybdenum, and aluminum. Residual elements include: zirconium, copper, titanium, tungsten, vanadium, columbium, and boron. A product analysis shall be made for specification conformance. Casting shell and core depth zone shall be established and examined. Repair methods such as grinding and welding are detailed.1.1 This specification covers cast alloy steels in the normalized and tempered or quenched and tempered condition, in section sizes through 37 in. (940 mm), suitable for high-strain gradient conditions such as those encountered in hooks, shackles, support frames, and other lifting devices. The classes of steel in this specification are weldable only with qualified procedures.1.2 Section range and class selection will depend on design and service conditions. Users should note that this specification contemplates mechanical property gradients.1.3 The values stated in inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in parentheses. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification. Inch-pound units are applicable for material ordered to this specification and SI units for material ordered to this specification.1.4 If, by agreement, castings are to be supplied in a partially completed condition, that is, all of the provisions of the product specification have not been filled, then the material marking (see Section 15) and certification (see Section 14) are to reflect the extent to which the product specification requirements have been met.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers standards for hot-rolled, heavy-thickness steel sheet and strip coils. The materials shall come in the following designations: (a) Commercial Steel (or CS) of Types A and B, and Standard Steel Designation; (b) Drawing Steel (DS) of Types A and B, and Standard Steel Designation; (c) Structural Steel (SS) of Grades 30[205], 33[230], 36[250] in Types 1 and 2, and 40[275]; (d) High-Strength Low-Alloy Steel (HSLAS) of Grades 45[310], 50[340], 55[380], 60[410], 65[450], and 70[480] in Classes 1 and 2; (e) High-Strength Low-Alloy Steel with Improved Formability (HSLAS-F) of Grades 50[340], 60[410], 70[480], and 80[550]; and (f) Ultra-High Strength Steel (UHSS) of Grades 90[620] and 100[690], Types 1 and 2. The strip and sheet coils shall conform to specified limit in width and thickness. Carbon, manganese, phosphorus, silicon, aluminum, silicon, copper, nickel, chromium, molybdenum, columbium, titanium, nitrogen, and boron contents shall be followed as specified by each designations, classes, types, and grades. Tension tests shall be performed. Materials shall adhere to yield strength, tensile strength, and elongation requirements. Guidelines for workmanship, finish, and appearance are given.1.1 This specification covers hot-rolled, heavy-thickness coils beyond the size limits of Specification A1011/A1011M.1.2 The product is available in six designations: Commercial Steel, Drawing Steel, Structural Steel, High-Strength Low-Alloy Steel, High-Strength Low-Alloy Steel with Improved Formability, and Ultra-High Strength Steel.1.3 This material is available only in coils described as follows:Product Size Limits, Coils Only  Width, in. [mm] Thickness, in. [mm]Strip Over 8 to 12, incl[Over 200 to 300] 0.230 to 1.000, incl[From 6.0 through 25]Sheet Over 12[Over 300] 0.230 to 1.000, incl[From 6.0 through 25]NOTE 1: The changes in width limits with the publication of A635/A635M – 06a result in a change in tensile testing direction for material from 0.180 in. [4.5 mm] to 0.230 in. exclusive [6.0 mm exclusive] over 48 in. [1200 mm] wide as that material is now covered by Specification A568/A568M – 06a. The purchaser is advised to discuss this change with the supplier.1.4 Sheet and strip in coils of sizes noted in 1.3 are covered by this specification only with the following provisions:1.4.1 The material is to be fed directly from coils into a blanking press, drawing or forming operation, tube mill, rolling mill, or sheared or slit into blanks for subsequent drawing or forming.1.4.2 The material is not to be converted into steel plates for structural or pressure vessel use unless tested in complete accordance with the appropriate sections of Specifications A6/A6M (plates provided from coils) or A20/A20M (plates produced from coils). Plate converted from coils is no longer governed by this sheet steel specification and since this material is now a plate, the requirements of the appropriate plate specification shall apply, except in cases where there is a conflict between the requirements of the plate specification and this specification. In these cases, the more restrictive limits of either specification shall apply.1.4.3 The dimensional tolerances of Specification A635/A635M are applicable to material produced to this specification.1.4.4 Not all strength levels are available in all thicknesses. The user should consult the producer for appropriate size limitations.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
85 条记录,每页 15 条,当前第 1 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页