微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
AS 1856-2004 (R2017) Electroplated coatings - Silver 现行 发布日期 :  2004-07-07 实施日期 : 

定价: 689元 / 折扣价: 586

在线阅读 收 藏
AS 1856-1991 Electroplated coatings - Silver 现行 发布日期 :  1991-12-09 实施日期 : 

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏
AS 2141-1978 Composition and marking requirements of silver articles 现行 发布日期 :  1978-04-01 实施日期 : 

定价: 260元 / 折扣价: 221

在线阅读 收 藏

3.1 Expanded welded socket joints may be used with the following pipe and tube:3.1.1 Seamless Copper Tube—2.375-in. (60-mm) outside diameter through 6.625-in. (170-mm) outside diameter.3.1.2 Seamless Copper-Nickel Tube—2.375-in. (60-mm) outside diameter through 6.625-in. (170-mm) outside diameter.3.1.3 Seamless Copper Water Tube—2.125-in. (55-mm) outside diameter through 4.125-in. (105-mm) outside diameter.3.1.4 Seamless Stainless Steel Pipe—2 NPS through 6 NPS, Schedules 5 and 10.3.2 Expanded silver brazed socket joints may be used with the following tube:3.2.1 Seamless Copper Tube—2.375-in. (60-mm) outside diameter through 6.625-in. (170-mm) outside diameter.3.2.2 Seamless Copper-Nickel Tube—2.375-in. (60-mm) outside diameter through 6.625-in. (170-mm) outside diameter.3.2.3 Seamless Copper Water Tube—2.125-in. (55-mm) outside diameter through 4.125-in. (105-mm) outside diameter.3.3 Expanded welded and silver brazed socket joints may be used where experience or test has demonstrated that the joint is safe and suitable for design and operating conditions, and where adequate provision is made to prevent separation of the joint.1.1 This practice covers expanded welded and silver brazed socket joints for use on shipboard piping systems.1.2 Expanded welded and silver brazed socket joints are to be used to join two pipes or tubes having the same NPS (see Note 1) without using a fitting or butt weld.1.3 Brazed socket type joints are not intended for use on systems containing flammable or combustible fluids in areas where fire hazards exist or where the service temperature exceeds 425°F (205°C).1.4 Brazed joints depending solely upon a fillet weld rather than primarily upon brazing material between pipe/tube and socket are not covered by this practice.NOTE 1: The dimensionless designator nominal pipe size (NPS) has been substituted in this practice for such traditional terms as “nominal diameter,” “size,” “nominal size,” and “iron pipe size.”1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Silver may be used to treat consumer textile products to provide enhanced antimicrobial (fungi, bacteria, viruses) properties (3, 4). At any point in a textile product’s lifecycle, there may be a need to measure the amount of silver present. This standard prescribes a test method based on ICP-OES or ICP-MS analysis that manufacturers, producers, analysts, policymakers, regulators, and others may use for measurement of total silver in textiles. As described in Guide E3025, determination of total silver in a consumer textile product is one component of a tiered approach to determine if silver is present, possibly as nanomaterial(s) (one or more external dimensions in the nanoscale), prior to measuring the form and dimension of the Ag that is found. ICP-OES or ICP-MS analysis alone is not sufficient to determine whether a textile contains silver nanomaterial(s).NOTE 4: There are many different chemical and physical forms of silver that are used to treat textiles and an overview of this topic is provided in Guide E3025.5.2 As described in Guide E3025, the amount of silver in a textile can decrease over time as silver metal and silver compounds can react with oxygen and other oxidation-reduction (redox) active agents present in the environment to form soluble ionic species which are released by contact with moisture (for example, from ambient humidity, washing, body sweat, rain, or other sources). Hence, if silver is measured in a textile, the result may only be indicative of that moment in the article’s life cycle and great care is necessary in drawing temporal inferences from the results.5.3 If silver is measured by ICP-OES or ICP-MS analysis, additional analyses are needed to elucidate the form of silver in the textile specimen. This step is necessary because ICP-OES or ICP-MS results are for total silver independent of chemical and physical form and textiles may be treated with silver in sizes that range from the nanoscale (for example, salt nanoparticles) to the micrometer scale (for example, particulates or fibers).5.4 If no silver is detected by ICP-OES, the more sensitive ICP-MS should be used to determine if silver is present in a test specimen. If no silver is detected in a textile sample using appropriate (fit for purpose) analytical techniques, then testing can be terminated.NOTE 5: Typical method detection limits are 0.6 µg Ag/L by ICP-OES and 0.002 µg Ag/L by ICP-MS which are comparable to limits successfully used to detect silver in a range of products, including sports textiles and wound dressings (2).5.5 Results of ICP-OES or ICP-MS analysis may be qualitative or quantitative, depending upon the efficacy of the digestion procedure for the textile matrix. Regardless, ICP-OES or ICP-MS analysis is recommended as a first step to screen for the presence of silver in a textile and results can be used to inform subsequent more detailed analyses as part of a tiered approach to determine if a textile contains silver nanomaterial(s).1.1 This test method covers the use of inductively coupled plasma–optical emission spectrometry (ICP-OES) and inductively coupled plasma–mass spectrometry (ICP-MS) analyses for determination of the mass fraction of total silver in consumer textile products made of any combination of natural or manufactured fibers. Either ICP-OES or ICP-MS analysis is recommended as a first step to test for and quantify silver in a textile and results can be used to inform subsequent, more detailed analyses as part of the tiered approach described in Guide E3025 to determine if a textile contains silver nanomaterial(s).1.2 This test method prescribes acid digestion to prepare test sample solutions from samples of textiles utilizing an appropriate internal standard followed by external calibration and analysis with either ICP-OES or ICP-MS to quantify total silver.1.3 This test method is believed to provide quantitative results for textiles made of fibers of rayon, cotton, polyester, and lycra that contain metallic silver (see Section 17). It is the analyst’s responsibility to establish the efficacy (ability to achieve the planned and desired analytical result) of this test method for other textile matrices and forms of silver.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurements are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM F1996-14 Standard Test Method for Silver Migration for Membrane Switch Circuitry (Withdrawn 2023) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

4.1 The effects of silver migration are short circuiting or reduction in insulation resistance. It is evidenced by staining or dicoloration between the cathode and anode conductive traces.4.2 Accelerated testing may be accomplished by increasing the voltage over the specified voltages. (A typical starting point would be 5Vdc 50mA).1.1 This test method is used to determine the susceptibility of a membrane switch to the migration of the silver between circuit traces under dc voltage potential.1.2 Silver migration will occur when special conditions of moisture and electrical energy are present.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers electrical contact components made from silver-molybdenum by powder metallurgical procedures. Chemical analysis of the samples shall be done to determine their chemical composition. The material shall be finished by different methods like braze alloy backing, tumbling to polish surfaces, special surface finish, and cleaning.1.1 This specification covers electrical contact components made from silver-molybdenum by powder metallurgical procedures.1.2 This specification covers compositions within the silver-molybdenum system for electrical contact applications.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers electrical contact components made from silver-tungsten carbide by powder metallurgical procedures. This specification covers compositions within the silver-tungsten carbide system. The material shall conform to composition limits. Chemical analysis shall be performed to deteremine material conformance to specified composition requirements. The contact components shall agree on qualification tests for determination of physical properties. The tests shall be performed on production parts wherever practical or applicable. The test shall be determined after consideration of the function of the part.1.1 This specification covers electrical contact components made from silver-tungsten carbide materials by powder metallurgical processes.1.2 This specification covers compositions within the silver-tungsten carbide system normally specified by users of contacts.NOTE 1: Table X1.1 and Table X1.2 in Appendix X1 provide a list of typical compositions used for various applications.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Crude petroleum contains sulfur compounds, most of which are removed during refining. However, of the sulfur compounds remaining in the petroleum product or introduced into the fuel during storage and distribution, some can have a corroding action on various metals and this corrosivity is not necessarily related directly to the total sulfur content. The effect can vary according to the chemical types of sulfur compounds present. The silver strip corrosion test is designed to assess the relative degree of corrosivity of a petroleum product towards silver and silver alloys.5.2 Under some circumstances, reactive sulfur compounds present in automotive spark-ignition engine fuels can tarnish or even corrode silver alloy fuel gauge in-tank sender units or silver-plated bearings (in 2-stroke cycle engines). To minimize or prevent the failure of silver alloy in-tank sender units by tarnish or corrosion, Specification D4814 requires that fuels shall pass a silver strip corrosion test.1.1 This test method covers the determination of the corrosiveness to silver by automotive spark-ignition engine fuel (for example, gasoline), as defined by Specification D4814 or similar specifications in other jurisdictions, having a vapor pressure no greater than 124 kPa (18 psi) at 37.8 °C (100 °F) by one of two procedures.1.1.1 Procedure A—Involves the use of a pressure vessel.1.1.2 Procedure B—Involves the use of a vented test tube.1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Crude petroleum contains sulfur compounds, most of which are removed during refining. However, of the sulfur compounds remaining in the petroleum product, some can have a corroding action on various metals and this corrosivity is not related to the total sulfur content. In addition, fuels can become contaminated by corrosive sulfur compounds during storage and distribution. The corrosive effect can vary according to the chemical types of sulfur compounds present.4.2 The silver strip corrosion test is designed to assess the relative degree of corrosivity of a petroleum product towards silver and silver alloys.4.3 Reactive sulfur compounds present in automotive spark-ignition engine fuels under some circumstances can corrode or tarnish silver alloy fuel gauge in-tank sender units (and silver-plated bearings in some 2-stroke cycle engines). To minimize or prevent the failure of silver alloy in-tank sender units by corrosion or tarnish, Specification D4814 requires that fuels shall pass the silver strip corrosion test.1.1 This test method covers the determination of the corrosiveness to silver by automotive spark-ignition engine fuel, as defined by Specification D4814, or similar specifications in other jurisdictions, having a vapor pressure no greater than 124 kPa (18 psi) at 37.8 °C (100 °F), by one of two procedures. Procedure A involves the use of a pressure vessel, whereas Procedure B involves the use of a vented test tube.1.2 The result of the test is based on a visual rating that is classified as an integer in the range from 0 to 4 as defined in Table 1.1.3 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 6.1 and Section 7.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification defines the criteria for composition and other requirements for sliding contact materials or brushes with a nominal composition by weight of 20% silver and 80% graphite. Materials shall adhere to specified requirements for chemical composition, density, shear strength, and microstructure. They shall also conform to typical values of Rockwell superficial hardness and specific resistance.1.1 This specification defines the criteria for composition and other requirements for brushes with a nominal silver content of 80 %, by weight, with the balance being substantially graphite.1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar will all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 This practice uses one monitor (cobalt) with a nearly 1/v absorption cross-section curve and a second monitor (silver) with a large resonance peak so that its resonance integral is large compared to its thermal cross section. The pertinent data for these two reactions are given in Table 1. The equations are based on the Westcott formalism ((2, 3) and Practice E261) and determine a Westcott 2200 m/s neutron fluence rate nv0 and the Westcott epithermal index parameter. References (4-6) contain a general discussion of the two-reaction test method. In this practice, the absolute activities of both cobalt and silver monitors are determined. This differs from the test method in the references wherein only one absolute activity is determined.(A) The numbers in parentheses following given values are the uncertainty in the last digit(s) of the value; 0.729 (8) means 0.729 ± 0.008, 70.8(1) means 70.8 ± 0.1.(B) The decay constant, λ, is defined as ln(2) / t1/2 with units of sec–1, where t1/2 is the nuclide half-life in seconds.(C) Calculated using Eq 10.(D) In Fig. 1, Θ = 4ErkT/AΓ2 = 0.2 corresponds to the value for 109Ag for T = 293 K, ∑r = N0σr,max,T=0Kσr,max,T=0K = 31138.03 barn at 5.19 eV (13). The value of σr,max,T=0K = 31138.03 barns is calculated using the Breit-Wigner single-level resonance formulawhere the 109Ag atomic mass is A = 108.9047558 amu (14), the ENDF/B-VIII.0 (MAT = 4731) (13) resonance parameters are: resonance total width Γ = 0.1427333 eV, formation neutron width Γn = 0.0127333 eV, and radiative/decay width Γγ = 0.13 eV, with a resonance spin J=1, and the statistical spin factorwhere s1 = 1/2 and s2 = 1/2 are the spins of the two particles (neutron and 109Ag ground state (15)) forming resonance.3.2 The advantages of this approach are the elimination of four difficulties associated with the use of cadmium: (1) the perturbation of the field by the cadmium; (2) the inexact cadmium cut-off energy; (3) the low melting temperature of cadmium; and (4) the potential for high dose-rate encountered when handling activated cadmium. In addition, the reactivity changes accompanying the rapid insertion and removal of cadmium may prohibit the use of the cadmium-ratio method. Self-shielding corrections are only important if the concentrations of cobalt and silver are large, but may be neglected for diluted alloys (<1 %). Studies indicate that the accuracy of the two-reaction method for determination of thermal neutron fluence is comparable to the cadmium-ratio method (16).3.3 The long half-lives of the two monitors permit the determination of fluence for long-term monitoring.1.1 This practice covers a suitable means of obtaining the thermal neutron fluence rate, or fluence, in nuclear reactor environments where the use of cadmium, as a thermal neutron shield as described in Test Method E262, is undesirable for reasons such as potential spectrum perturbations or due to temperatures above the melting point of cadmium.1.2 The reaction 59Co(n,γ )60Co results in a well-defined gamma emitter having a half-life of 5.2711 years2 (8)3 (1).4 The reaction 109Ag(n,γ)110mAg results in a nuclide with a well-known, complex decay scheme with a half-life of 249.78 (2) days (1). Both cobalt and silver are available either in very pure form or alloyed with other metals such as aluminum. A reference source of cobalt in aluminum alloy to serve as a neutron fluence rate monitor wire standard is available from the National Institute of Standards and Technology (NIST) as Standard Reference Material (SRM) 953.5 The competing activities from neutron activation of other isotopes are eliminated, for the most part, by waiting for the short-lived products to die out before counting. With suitable techniques, thermal neutron fluence rate in the range from 108 cm−2·s−1 to 3 × 1015 cm−2·s−1 can be measured. Two calculational practices are described in Section 9 for the determination of neutron fluence rates. The practice described in 9.3 may be used in all cases. This practice describes a means of measuring a Westcott neutron fluence rate in 9.2 (Note 1) by activation of cobalt- and silver-foil monitors (see Terminology E170). For the Wescott Neutron Fluence Convention method to be applicable, the measurement location must be well moderated and be well represented by a Maxwellian low-energy distribution and an (1/E) epithermal distribution. These conditions are usually only met in positions surrounded by hydrogenous moderator without nearby strongly multiplying or absorbing materials.NOTE 1: Westcott fluence rate1.3 The values stated in SI units are to be regarded as the standard, except in the case of nuclear data where the source referenced units are retained in order to preserve the integrity of the referenced uncertainty values.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers an alloy containing palladium, silver, copper, platinum, and nickel in the form of wire, rod, and strip for electrical contacts. The materials shall be processed by cold working, heat treating, annealing, turning, grinding, and pickling. The material shall conform to the required chemical composition of palladium, silver, copper, platinum, and nickel. The alloys shall conform to the required mechanical properties such as tensile strength, elongation, Knoop hardness, and Vickers hardness.1.1 This specification covers an alloy containing palladium, silver, copper, platinum, and nickel in the form of wire, rod, and strip for electrical contacts.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The following precautionary statement pertains to the test method portion only, Section 7, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of total iron in ores, concentrates, and agglomerates in the concentration range from 35 to 95% iron, and is free from vanadium interference. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.2.1 Use of safety goggles is required for fusion with sodium peroxide.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers 72% silver-28% copper (eutectic) alloy rod, wire, strip, and sheet material for electrical contacts. The material shall be finished by such operations (cold working, heat treatment, annealing, turning, grinding, or pickling) as are required to produce the prescribed properties. The alloy materials shall conform to the chemical composition and mechanical property requirements. All tests shall be conducted at room temperature.1.1 This specification covers 72 % silver-28 % copper (eutectic) alloy rod, wire, strip, and sheet material for electrical contacts.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
48 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页