微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The determination of WPPO composition is useful in optimization of process variables, diagnosing unit performance, and in evaluating the effect of changes in waste plastic composition on WPPO performance properties.5.1.1 Aromatics and olefin hydrocarbon type analysis, including sub-classes, may be useful for evaluating suitability of WPPO as a feedstock for further processing.1.1 This test method covers a standard procedure for the determination of hydrocarbon types (saturates, olefins, styrenes, aromatics and polyaromatics) of waste plastic process oil (WPPO) from chemical or thermal processes using gas chromatography and vacuum ultraviolet absorption spectroscopy detection (GC-VUV).1.1.1 This test method is applicable for plastic recycling and circular schemes including wide range density material from polyethylene and polypropylene.1.1.2 The test method is applicable to waste plastic process oil having a final boiling point of 545 °C or lower at atmospheric pressure as measured by this test or Test Method D2887. This test method is limited to samples having a boiling range greater than 36 °C, and having a vapor pressure sufficiently low to permit sampling at ambient temperature.1.1.3 WPPOs with initial boiling points less than nC5 (36 °C) and final boiling point less than nC15 (271 °C) may be analyzed by Test Method D8369.1.1.4 Appendix X3 is applicable to waste plastic process oils that are predominantly hydrocarbons in the boiling range of pentane, nC5 (36 °C) to tetrahexacontane, nC64 (629 °C).1.2 Concentrations of group type totals are determined by percent mass or percent volume. The applicable working ranges are as follows:Total Aromatics %Mass 1 to 50Monoaromatics %Mass 1 to 50Diaromatics %Mass 1 to 15Tri-plus aromatics %Mass 0.5 to 5PAH %Mass 0.5 to 15Saturates %Mass 5 to 99Olefins %Mass 1 to 80Conjugated diolefins %Mass 0.2 to 5Styrenes %Mass 0.2 to 5The final precision concentration ranges will be defined by a future ILS.1.2.1 Saturates totals are the result of the summation of normal paraffins, isoparaffins, and naphthenes.1.2.2 Aromatics are the summation of monoaromatic and polyaromatic group types. Polyaromatic totals are the result of the summation of diaromatic and tri-plus aromatic group types.1.2.3 Olefin totals are the result of the sum of mono-olefins, conjugated diolefins, non-conjugated diolefins, and cyclic olefins.1.2.4 Styrenes totals are the sum of styrene and alkylated styrenes. Styrenes are classified separately, neither as aromatic nor olefin.1.3 Waste plastic process oil containing mixed plastic types such as polyethylene terephthalate PET and polyvinyl chloride or other material may yield compounds including hetero-compounds that are not speciated by this test method.1.4 Individual components are typically not baseline separated by the procedure described in this test method. The coelutions are resolved at the detector using VUV absorbance spectra and deconvolution algorithms.1.5 This test method may apply to other process oils from sources such as tires and bio-mass boiling between pentane (36 °C) and tetratetracontane (545 °C), but has not been extensively tested for such applications.1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement, other than the boiling point of normal paraffins (°F) in Table 2 and Table X.3.1, are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 Benzene is a compound that endangers health, and the concentration is limited by environmental protection agencies to produce a less toxic gasoline.5.2 This test method is fast, simple to run, and inexpensive.5.3 This test method is applicable for quality control in the production and distribution of spark-ignition engine fuels.1.1 This test method covers the determination of the percentage of benzene in spark-ignition engine fuels. It is applicable to concentrations from 0.1 % to 5 % by volume.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides a means for obtaining useful in-service fluid analysis properties in the field. It is not to be confused with laboratory or portable FTIR devices which provide measurements per the existing Test Methods listed in 4.1.1.1. Each of these monitored properties has been shown over time to indicate either contamination in the fluid system or a particular breakdown modality of the fluid, which is critical information to assess the health of the fluid as well as the machinery. By utilizing the field device, it is possible for those operating machinery, in locations and situations where it is not practical to gather a sample for the laboratory, to obtain quality in-service fluid analysis. This may be due to the need to have an analysis done in real-time, on-the-spot to maximize the operational hours of equipment, or to have the analysis performed at a location where no laboratory analysis is available.1.1 This test method describes the use of a grating spectrometer to analyze properties of an in-service fluid sample which are indicative of the status of that fluid and related machinery.1.2 This test method provides a means for the assessment of in-service fluid properties using infrared spectroscopy. It describes a methodology for sampling, performing analysis, and providing key in-service fluid properties with a self-contained unit that is meant for field use. It provides analysis of in-service fluids at any stage of their useful life, including newly utilized fluid.1.3 In particular, these key in-service fluid properties include oxidation, nitration, sulfation, soot, and antiwear additives. They are applicable for hydrocarbon type (API Group I-IV) fluids from machinery lubricants, including reciprocating engine oils, turbine oils, hydraulic oils, and gear oils.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4.1 Exception—The unit for wavenumbers is in cm-1.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The composition and sequential structure of alginate determines the functionality of alginate in an application. For instance, the gelling properties of an alginate are highly dependent upon the monomer composition and sequential structure of the polymer. Gel strength will depend upon the guluronic acid content (FG) and also the average number of consecutive guluronate moieties in G-block structures (NG>1).4.2 Chemical composition and sequential structure of alginate can be determined by 1H- and 13C-nuclear magnetic resonance spectroscopy (NMR). A general description of NMR can be found in <761> of the USP 35-NF30. The NMR methodology and assignments are based on data published by Grasdalen et al. (1979, 1981, 1983).4, 5, 6 The NMR technique has made it possible to determine the monad frequencies FM (fraction of mannuronate units) and FG (fraction of guluronate units), the four nearest neighboring (diad) frequencies FGG, FMG, FGM, FMM, and the eight next nearest neighboring (triad) frequencies FGGG, FGGM, FMGG, FMGM, FMMM, FMMG, FGMM, FGMG. Knowledge of these frequencies enables number averages of block lengths to be calculated. NG is the number average length of G-blocks, and NG>1 is the number average length of G-blocks from which singlets (-MGM-) have been excluded. Similarly, NM is the number average length of M-blocks, and NM>1 is the number average length of M-blocks from which singlets (-GMG-) have been excluded. 13C NMR must be used to determine the M-centered triads and NM>1. This test method describes only the 1H NMR analysis of alginate. Alginate can be well characterized by determining FG and NG>1.4.3 In order to obtain well-resolved NMR spectra, it is necessary to reduce the viscosity and increase the mobility of the molecules by depolymerization of alginate to a degree of polymerization of about 20 to 50. Acid hydrolysis is used to depolymerize the alginate samples. Freeze-drying, followed by dissolution in 99 % D2O, and another freeze-drying before dissolution in 99.9 % D2O yields samples with low 1H2O content. TTHA is used as a chelator to prevent traces of divalent cations to interact with alginate. While TTHA is a more effective chelator, other agents such as EDTA and citrate may be used. Such interactions may lead to line broadening and selective loss of signal intensity.4.4 Samples are analyzed at a temperature of 80 ± 1°C. Elevated sample temperature contributes to reducing sample viscosity and repositions the proton signal of residual water to an area outside that of interest.1.1 This test method covers the determination of the composition and monomer sequence of alginate intended for use in biomedical and pharmaceutical applications as well as in Tissue Engineered Medical Products (TEMPs) by high-resolution proton NMR (1H NMR). A guide for the characterization of alginate has been published as Guide F2064.1.2 Alginate, a linear polymer composed of β-D-mannuronate (M) and its C-5 epimer α-L-guluronate (G) linked by β-(1—>4) glycosidic bonds, is characterized by calculating parameters such as mannuronate/guluronate (M/G) ratio, guluronic acid content (G-content), and average length of blocks of consecutive G monomers (that is, NG>1 ). Knowledge of these parameters is important for an understanding of the functionality of alginate in TEMP formulations and applications. This test method will assist end users in choosing the correct alginate for their particular application. Alginate may have utility as a scaffold or matrix material for TEMPs, in cell and tissue encapsulation applications, and in drug delivery formulations.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The degree of deacetylation of chitosan salts is an important characterization parameter since the charge density of the chitosan molecule is responsible for potential biological and functional effects.4.2 The degree of deacetylation (% DDA) of water-soluble chitosan salts can be determined by 1H nuclear magnetic resonance spectroscopy (1H NMR). Several workers have reported on the NMR determination of chemical composition and sequential arrangement of monomer units in chitin and chitosan. The test method described is primarily based on the work of Vårum et al. (1991),5 which represents the first publication on routine determination of chemical composition in chitosans by solution state 1H NMR spectroscopy. This test method is applicable for determining the % DDA of chitosan chloride and chitosan glutamate salts. It is a simple, rapid, and suitable method for routine use. Quantitative 1H NMR spectroscopy reports directly on the relative concentration of chemically distinct protons in the sample, consequently, no assumptions, calibration curves or calculations other than determination of relative signal intensity ratios are necessary.4.3 In order to obtain well-resolved NMR spectra, depolymerization of chitosans to a number average degree of polymerization (DPn) of ~15 to 30 is required. This reduces the viscosity and increases the mobility of the molecules. Although there are several options for depolymerization of chitosans, the most convenient procedure is that of nitrous acid degradation in deuterated water. The reaction is selective, stoichiometric with respect to GlcN, rapid, and easily controlled (Allan & Peyron, 1995).6 The reaction selectively cleaves after a GlcN-residue, transforming it into 2,5-anhydro-D-mannose (chitose), consequently, depletion of GlcN after depolymerization is expected. On the other hand, the chitose unit displays characteristic 1H NMR signals the intensity of which may be estimated and utilized in the calculation of % DDA, eliminating the need for correction factors. Using the intensity of the chitose signals, the number average degree of polymerization can easily be calculated as a control of the depolymerization.4.4 Samples are equilibrated and analyzed at a temperature of 90 ± 1°C. Elevated sample temperature contributes to reducing sample viscosity and repositions the proton signal of residual water to an area outside that of interest. While samples are not stored at 90°C but only analyzed at this elevated temperature, the NMR tubes should be sealed with a stopper to avoid any evaporation. At a sample pH* of 3.8-4.3 (see 6.1.5 below), artifactual deacetylation of the sample does not occur during the short equilibration and analysis time.4.5 A general description of NMR can be found in <761> of the USP 35-NF30.1.1 This test method covers the determination of the degree of deacetylation in chitosan and chitosan salts intended for use in biomedical and pharmaceutical applications as well as in Tissue Engineered Medical Products (TEMPs) by high-resolution proton NMR (1H NMR). A guide for the characterization of chitosan salts has been published as Guide F2103.1.2 The test method is applicable for determining the degree of deacetylation (% DDA) of chitosan chloride and chitosan glutamate salts and is valid for % DDA values from 50 up to and including 99. It is simple, rapid, and suitable for routine use. Knowledge of the degree of deacetylation is important for an understanding of the functionality of chitosan salts in TEMP formulations and applications. This test method will assist end users in choosing the correct chitosan for their particular application. Chitosan salts may have utility in drug delivery applications, as scaffold or matrix material, and in cell and tissue encapsulation applications.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This guide presents the use of spectral searching by curve matching search algorithms for data recorded using mid-infrared spectroscopy. The methods described herein may be applicable to the use of these algorithms for other types of spectroscopic data, but each type of data search should be assessed separately. The purpose of this evaluation is the classification and, where possible, identification of the unknown. Spectral searching is intended as a screening method to assist the analyst, and is not an absolute identification technique, and hence, not intended to replace an expert in infrared spectroscopy and should not be used without suitable training. The Euclidean distance algorithm and the first derivative Euclidean distance algorithm are described and their use discussed. The theory and common assumptions made when using search algorithms are also discussed, along with guidelines for the use and interpretation of the search results.1.1 Spectral searching is the process whereby a spectrum of an unknown material is evaluated against a library (database) of digitally recorded reference spectra. The purpose of this evaluation is classification of the unknown and, where possible, identification of the unknown. Spectral searching is intended as a screening method to assist the analyst and is not an absolute identification technique. Spectral searching is not intended to replace an expert in infrared spectroscopy. Spectral searching should not be used without suitable training.1.2 The user of this guide should be aware that the results of a spectral search can be affected by the following factors described in Section 5: (1) baselines, (2) sample purity, (3) Absorbance linearity (Beer’s Law), (4) sample thickness, (5) sample technique and preparation, (6) physical state of the sample, (7) wavenumber range, (8) spectral resolution, and (9) choice of algorithm.1.2.1 Many other factors can affect spectral searching results.1.3 The scope of this guide is to provide a guide for the use of search algorithms for mid-infrared spectroscopy. The methods described herein may be applicable to the use of these algorithms for other types of spectroscopic data, but each type of data search should be assessed separately.1.4 The Euclidean distance algorithm and the first derivative Euclidean distance algorithm are described and their use discussed. The theory and common assumptions made when using search algorithms are also discussed, along with guidelines for the use and interpretation of the search results.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
221 条记录,每页 15 条,当前第 1 / 15 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页