微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers stainless steel bars for compressor and turbine bucket, blade, and airfoil applications. Materials shall be produced by basic electric furnace melting process with argon-oxygen-decarburization refining or by vacuum ladle degassing. Electro-slag remelting shall also be conducted unless otherwise specified by the purchaser. Two complete heat treatments, consisting of an austenize, quench, and temper, shall be conducted. Straightening, stress relieving, and water or oil quenching shall be executed as well. Steel bars shall adhere to chemical composition and mechanical property requirements, including tensile strength, yield strength, elongation, reduction of area, impact strength, and Brinell hardness.1.1 This specification covers stainless steel bars for compressor and turbine bucket, blade, and airfoil applications.1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM D1740-01 Standard Test Method for Luminometer Numbers of Aviation Turbine Fuels (Withdrawn 2006) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 This test method covers the measurement of the flame radiation characteristics of aviation turbine fuels and other similar distillate fuels expressed in terms of luminometer numbers. There is good correlation between smoke point (Test Method D 1322) and luminometer number which is presented in .This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see , , , and Annex .

定价: 0元 / 折扣价: 0

在线阅读 收 藏

3.1 This practice shall be used when ultrasonic inspection is required by the order or specification for inspection purposes where the acceptance of the forging is based on limitations of the number, amplitude, or location of discontinuities, or a combination thereof, which give rise to ultrasonic indications.3.2 The acceptance criteria shall be clearly stated as order requirements.1.1 This practice for ultrasonic examination covers turbine and generator steel rotor forgings covered by Specifications A469/A469M, A470/A470M, A768/A768M, and A940/A940M. This practice shall be used for contact testing only.1.2 This practice describes a basic procedure of ultrasonically inspecting turbine and generator rotor forgings. It does not restrict the use of other ultrasonic methods such as reference block calibrations when required by the applicable procurement documents nor is it intended to restrict the use of new and improved ultrasonic test equipment and methods as they are developed.1.3 This practice is intended to provide a means of inspecting cylindrical forgings so that the inspection sensitivity at the forging center line or bore surface is constant, independent of the forging or bore diameter. To this end, inspection sensitivity multiplication factors have been computed from theoretical analysis, with experimental verification. These are plotted in Fig. 1 (bored rotors) and Fig. 2 (solid rotors), for a true inspection frequency of 2.25 MHz, and an acoustic velocity of 2.30 in./s × 105 in./s [5.85 cm/s × 105 cm/s]. Means of converting to other sensitivity levels are provided in Fig. 3. (Sensitivity multiplication factors for other frequencies may be derived in accordance with X1.1 and X1.2 of Appendix X1.)FIG. 1 Bored ForgingsNOTE 1: Sensitivity multiplication factor such that a 10 % indication at the forging bore surface will be equivalent to a 1/8 in. [3 mm] diameter flat bottom hole. Inspection frequency: 2.0 MHz or 2.25 MHz. Material velocity: 2.30 in./s × 105 in./s [5.85 cm/s × 105 cm/s].FIG. 2 Solid ForgingsNOTE 1: Sensitivity multiplication factor such that a 10 % indication at the forging centerline surface will be equivalent to a 1/8 in. [3 mm] diameter flat bottom hole. Inspection frequency: 2.0 MHz or 2.25 MHz. Material velocity: 2.30 in./s × 105 in./s [5.85 cm/s × 105 cm/s].FIG. 3 Conversion Factors to Be Used in Conjunction with Fig. 1 and Fig. 2 if a Change in the Reference Reflector Diameter is Required1.4 Considerable verification data for this method have been generated which indicate that even under controlled conditions very significant uncertainties may exist in estimating natural discontinuities in terms of minimum equivalent size flat-bottom holes. The possibility exists that the estimated minimum areas of natural discontinuities in terms of minimum areas of the comparison flat-bottom holes may differ by 20 dB (factor of 10) in terms of actual areas of natural discontinuities. This magnitude of inaccuracy does not apply to all results but should be recognized as a possibility. Rigid control of the actual frequency used, the coil bandpass width if tuned instruments are used, and so forth, tend to reduce the overall inaccuracy which is apt to develop.1.5 This practice for inspection applies to solid cylindrical forgings having outer diameters of not less than 2.5 in. [64 mm] nor greater than 100 in. [2540 mm]. It also applies to cylindrical forgings with concentric cylindrical bores having wall thicknesses of 2.5 [64 mm] in. or greater, within the same outer diameter limits as for solid cylinders. For solid sections less than 15 in. [380 mm] in diameter and for bored cylinders of less than 7.5 in. [190 mm] wall thickness the transducer used for the inspection will be different than the transducer used for larger sections.1.6 Supplementary requirements of an optional nature are provided for use at the option of the purchaser. The supplementary requirements shall apply only when specified individually by the purchaser in the purchase order or contract.1.7 This practice is expressed in both inch-pound units and in SI units; however, unless the purchase order or contract specifies the applicable M specification designation (SI units), the inch-pound units shall apply. The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the practice, the SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Aircraft turbine lubricants, upon standing at low temperatures for prolonged periods of time, may show an increase in kinematic viscosity. This increase may cause lubrication problems in aircraft engines. Thus, this test method is used to ensure that the kinematic viscosity does not exceed the maximum kinematic viscosity in certain specifications for aircraft turbine lubricants.1.1 This test method covers the determination of the kinematic viscosity of aircraft turbine lubricants at low temperature, and the percent change of viscosity after a 3 h and a 72 h standing period at low temperature.1.1.1 The range of kinematic viscosities covered by this test method is from 7700 mm2/s to 14 000 mm2/s at –40 °C and from 7000 mm2/s to 17 500 mm2/s at –51 °C. The precision has only been determined for those materials, kinematic viscosity ranges, and temperatures as shown in the precision section. Kinematic viscosities and percent change of viscosity may be measured and reported at other temperatures and other thermal soak period intervals as agreed by the contracting parties.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 The SI unit used in this test method for Kinematic Viscosity is mm2/s. For user reference, 1 mm2/s = 10-6 m2/s = 1 cSt.1.3 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Horizontal metal surfaces, on which water droplets tend to be retained, are more prone to rusting and corrosion than vertical or sloping surfaces. This test method is therefore more discriminating than Test Method D665 (Procedure A), since it gives a separate evaluation of the oil on a horizontal and a vertical surface. The test method indicates the ability of oils to prevent rusting and corrosion of all ferrous surfaces in steam turbines under full flow and quasi-static conditions. It is used for specification of new oils.1.1 This test method covers the ability of steam-turbine oils to prevent the rusting of horizontal and vertical ferrous surfaces when water becomes mixed with the oil.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers stainless steel forgings for compressor and turbine bucket, blade, and airfoil applications. The stainless steel shall be made by the melting process and either the closed impression die or the open die forging processes may be utilized. Two complete heat treatments, consisting of an austenize, quench, and temper, are permitted. When heat treatment for mechanical properties is followed by straightening, a stress-relieving heat treatment is required. The forgings shall be subjected to tension, impact, hardness, and non-destructive tests. All forgings shall be free of cracks, seams, laps, shrinkage, and similar discontinuities.1.1 This specification covers stainless steel forgings for compressor and turbine bucket, blade, and airfoil applications.1.2 This specification is expressed in both inch-pound units and in SI units; however, unless the purchase order or contract specifies the applicable M designation (SI units), the inch-pound units shall apply. The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Knowledge of the presence of trace metals in gas turbine fuels enables the user to predict performance and, when necessary, to take appropriate action to prevent corrosion.1.1 This test method covers the determination of sodium, lead, calcium, and vanadium in Specification D2880 Grade Nos. 0-GT through 4-GT fuels at 0.5 mg/kg level for each of the elements. This test method is intended for the determination of oil-soluble metals and not waterborne contaminants in oil-water mixtures.1.1.1 Test Method D6728 is suggested as an alternative test method for the determination of these elements in Specification D2880.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This practice covers minimum requirements for the design and manufacture of turbine engines for unmanned aircraft systems.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method provides an indication of the relative smoke producing properties of kerosenes and aviation turbine fuels in a diffusion flame. The smoke point is related to the hydrocarbon type composition of such fuels. Generally the more aromatic the fuel the smokier the flame. A high smoke point indicates a fuel of low smoke producing tendency.5.2 The smoke point is quantitatively related to the potential radiant heat transfer from the combustion products of the fuel. Because radiant heat transfer exerts a strong influence on the metal temperature of combustor liners and other hot section parts of gas turbines, the smoke point provides a basis for correlation of fuel characteristics with the life of these components.1.1 This test method covers two procedures for determination of the smoke point of kerosene and aviation turbine fuel, a manual procedure and an automated procedure, which give results with different precision.1.2 The automated procedure is the referee procedure.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Specification D1655 provides a maximum permissible concentration (5.7 mg/L) of MDA in aviation turbine fuel. This test method will allow the quantification of MDA in aviation turbine fuels. The MDA additive is used for fuel thermal stability control and to reduce fuel degradation caused by the presence of trace metals (copper in particular) in aviation fuels.1.1 This test method covers the determination of the metal deactivator additive (MDA) content of aviation turbine fuels. The specific MDA determined and used to develop this test method is N,N′-disalicylidene-1,2-propanediamine. Other MDAs have not been tested by this test method.1.1.1 This test method specifically covers the determination of uncomplexed MDA content in aviation turbine fuel. MDA is a chelator of divalent metal ions, and the MDA-metal ion complexed species content of aviation turbine fuel will not be accounted for by this test method.1.2 This test method is divided into two procedures: (1) Procedure A uses a semi-portable capillary-liquid chromatography system (Capillary-HPLC) that may be used in the field or laboratory; (2) Procedure B uses a standard laboratory version of liquid chromatography (Conventional-HPLC). Procedures A and B have separate precisions.1.3 The test method has an interim repeatability determined in accordance with Practice D6300. Based on the mean values of the samples used in the interim repeatability study, Procedure A is applicable in the range of 0.50 mg/mL to 10.0 mg/mL; the range for Procedure B is 0.60 mg/mL to 9.6 mg/mL. Higher concentrations can be determined by dilution, but the precision of the test method has not been determined.1.3.1 An extended interlaboratory study (ILS) will be conducted in the future to determine the full repeatability and reproducibility and the final applicable concentration ranges.1.3.2 The test method applies to MDA in petroleum-based aviation fuels and Synthetic Aviation Fuels (SAF). However, for the interim precision, a petroleum-based aviation fuel was used. Future ILS will include petroleum-based and SAFs. The test method is applicable to aviation fuels conforming to Specification D1655.1.4 Appendix X2 indicates other additives that have been verified to not interfere with the analysis of this test method.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The quantitative determination of hindered phenol antioxidants in a new turbine oil measures the amount of this material that has been added to the oil as protection against oxidation. Beside phenols, turbine oils can be formulated with other antioxidants such as amines which can extend the oil life. In used oil, the determination measures the amount of original (phenolic) antioxidant remaining after oxidation have reduced its initial concentration. This test method is not designed or intended to detect all of the antioxidant intermediates formed during the thermal and oxidative stressing of the oils, which are recognized as having some contribution to the remaining useful life of the used or in-service oil. Nor does it measure the overall stability of an oil, which is determined by the total contribution of all species present. Before making final judgment on the remaining useful life of the used oil, which might result in the replacement of the oil reservoir, it is advised to perform additional analytical techniques (in accordance with Practices D6224 and D4378), having the capability of measuring remaining oxidative life of the used oil.5.1.1 This test method is applicable to non-zinc turbine oils. These are refined mineral oils containing rust and oxidation inhibitors, but not antiwear additives. This test method has not yet been established with sufficient precision for antiwear oils.5.2 This test method is also suitable for manufacturing control and specification acceptance.5.3 When a voltammetric analysis is obtained for a turbine oil inhibited with a typical hindered phenol antioxidant, there is an increase in the current of the produced voltammogram between 3 s to 5 s (or 0.3 V to 0.6 V applied voltage) (see Note 1) in the basic test solution (Fig. 1—x-axis 1 second = 0.1 V). Hindered phenol antioxidants detected by voltammetric analysis include, but are not limited to, 2,6-di-tert-butyl-4-methylphenol; 2,6-di-tert-butylphenol and 4,4'-methylenebis(2,6-di-tert-butylphenol).NOTE 1: Voltages listed with respect to reference electrode. The voltammograms shown in Figs. 1 and 2 were obtained with a platinum reference electrode and a voltage scan rate of 0.1 V/s.FIG. 2 Amine and Hindered Phenols Peaks in the Basic Test Solution with Blank Response ZeroedNOTE 1: x-axis = time (seconds) and y-axis is current (arbitrary units). Top line in Fig. 2 is fresh oil, and lower line is used oil.5.4 For non-zinc turbine oils containing aromatic (aryl) amine compounds (antioxidants and corrosion inhibitors), there is an increase in the current of the produced voltammogram between 7 s to 11 s (0.7 V to 1.1 V applied voltage in Fig. 2) (see Note 1) which does not interfere with the hindered phenol measurement in the basic test solution. For the measurement of these aromatic amine antioxidants, refer to Test Method D6971, where the neutral test solution shall be used.1.1 This test method covers the voltammetric determination of hindered phenol antioxidants in new or in-service non-zinc turbine oils in concentrations from 0.0075 % by weight up to concentrations found in new oils by measuring the amount of current flow at a specified voltage in the produced voltammogram.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

The thermal stresses experienced by aviation fuel in modern jet engines may lead to the formation of undesirable and possibly harmful insoluble materials, such as lacquers, on heat exchangers and control surfaces, that reduce efficiency and require extra maintenance.Aircraft fuel systems operate mainly under turbulent flow conditions. Most large-scale realistic test rigs operate in the turbulent flow regime but fuel volumes are very large and test times are very long.This test method tests fuel under turbulent flow (high Reynolds number) conditions, and it gives a quantitative result under standard operating conditions of 65 or 125 min. Continuous analysis of results during the test allows performance of the fuel to be monitored in real time thus enabling the test time to be reduced manually or automatically, if required.The results of this test method are not expected to correlate with existing test methods for all fuels, since the test methods and operating conditions are different (see Appendix X2).1.1 This test method covers a laboratory thermal process, using a specified apparatus for measuring the tendencies of aviation turbine fuels to deposit insoluble materials and decomposition products, such as lacquers, within a fuel system. This test method provides a quantitative result for fuel under turbulent flow conditions in 65 or 125 min.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Wear due to excessive friction resulting in shortened life of engine components such as fuel pumps and fuel controls has sometimes been ascribed to lack of lubricity in an aviation fuel.5.2 The relationship of test results to aviation fuel system component distress due to wear has been demonstrated for some fuel/hardware combinations where boundary lubrication is a factor in the operation of the component.5.3 The wear scar generated in the ball-on-cylinder lubricity evaluator (BOCLE) test is sensitive to contamination of the fluids and test materials, the presence of oxygen and water in the atmosphere, and the temperature of the test. Lubricity measurements are also sensitive to trace materials acquired during sampling and storage. Containers specified in Practice D4306 shall be used.5.4 The BOCLE test method may not directly reflect operating conditions of engine hardware. For example, some fuels that contain a high content of certain sulfur compounds can give anomalous test results.1.1 This test method covers assessment of the wear aspects of the boundary lubrication properties of aviation turbine fuels on rubbing steel surfaces.1.1.1 This test method incorporates two procedures, one using a semi-automated instrument and the second a fully automated instrument. Either of the two instruments may be used to carry out the test.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This practice provides criteria for products used to measure particulate matter present in a sample of aviation turbine fuel. The objective is to verify that filters, support pads, and field monitors fall within the acceptable ranges that are established by this practice.1.1 This practice determines suitability of products used for measuring particulate contamination in aviation turbine fuel when using Test Methods D5452 and D2276.1.2 There are two major parts of this practice. The first is for evaluation of the cellulose acetate butyrate field monitors that are used in combination with the filters and the filter support pads. The second part is for evaluation of the filter when used with an appropriate cellulose acetate butyrate field monitor.1.3 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended for use in the laboratory or field in evaluating aviation turbine fuel cleanliness.5.2 A change in filtration performance after storage, pretreatment, or commingling can be indicative of changes in fuel condition.5.3 Relative filterability of fuels may vary, depending on filter porosity and structure, and may not always correlate with results from this test method.5.4 Causes of poor filterability in industrial/refinery filters include fuel degradation products, contaminants picked up during storage or transfer, incompatibility of commingled fuels, or interaction of the fuel with the filter media. Any of these could correlate with orifice or filter system plugging, or both.1.1 This test method covers a procedure for determining the filterability of aviation turbine fuels (for other middle distillate fuels, see Test Method D6426).NOTE 1: ASTM specification fuels falling within the scope of this test method are Specifications D1655 and D6615 and the military fuels covered in the military specifications listed in 2.2.1.2 This test method is not applicable to fuels that contain undissolved water.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
71 条记录,每页 15 条,当前第 1 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页