微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This test method is particularly applicable to nonrigid thermoplastic sheeting or film made by the calender or extrusion process. The test gives an indication of lot-to-lot uniformity in regards to the degree of internal strains introduced during processing.4.2 The heating medium in this test method is air and does not necessarily yield the same results as Test Method D2732, which uses a liquid medium.4.3 Before proceeding with this test method, review the specifications of the material being tested, if available. Any test specimen preparation, conditioning, dimensions, or testing parameters, or combination thereof, covered in the relevant ASTM material specification shall take precedence over those mentioned in this test method. If there are no relevant ASTM material specifications, then the default conditions apply. Table 1 of Classification System D4000 lists the ASTM material standards that currently exist.1.1 This test method covers the measurement of changes in linear dimensions of nonrigid thermoplastic sheeting or film that result from exposure of the material to specified conditions of elevated temperature and time.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This test method and ISO 11501 address the same matter, but differ in technical content (and results cannot be directly compared between the two methods).1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites generally characterized by crystalline matrices and ceramic fiber reinforcements are candidate materials for structural applications requiring high degrees of wear and corrosion resistance, and elevated-temperature inherent damage tolerance (that is, toughness). In addition, continuous fiber-reinforced glass (amorphous) matrix composites are candidate materials for similar but possibly less demanding applications. Although flexural test methods are commonly used to evaluate strengths of monolithic advanced ceramics, the nonuniform stress distribution of the flexure test specimen, in addition to dissimilar mechanical behavior in tension and compression for CFCCs, leads to ambiguity of interpretation of strength results obtained from flexure tests for CFCCs. Uniaxially loaded tensile strength tests provide information on mechanical behavior and strength for a uniformly stressed material.4.3 Unlike monolithic advanced ceramics that fracture catastrophically from a single dominant flaw, CFCCs generally experience “graceful” (that is, non-catastrophic, ductile-like stress-strain behavior) fracture from a cumulative damage process. Therefore, the volume of material subjected to a uniform tensile stress for a single uniaxially loaded tensile test may not be as significant a factor in determining the ultimate strengths of CFCCs. However, the need to test a statistically significant number of tensile test specimens is not obviated. Therefore, because of the probabilistic nature of the strengths of the brittle fibers and matrices of CFCCs, a sufficient number of test specimens at each testing condition is required for statistical analysis and design. Studies to determine the influence of test specimen volume or surface area on strength distributions for CFCCs have not been completed. It should be noted that tensile strengths obtained using different recommended tensile test specimen geometries with different volumes of material in the gage sections may be different due to these volume differences.4.4 Tensile tests provide information on the strength and deformation of materials under uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior that may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, and so forth) that may be influenced by testing mode, testing rate, effects of processing or combinations of constituent materials, environmental influences, or elevated temperatures. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth that can be minimized by testing at sufficiently rapid rates as outlined in this test method.4.5 The results of tensile tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size end product or its in-service behavior in different environments or various elevated temperatures.4.6 For quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for the particular primary processing conditions and post-processing heat treatments.4.7 The tensile behavior and strength of a CFCC are dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, is recommended.1.1 This test method covers the determination of tensile strength, including stress-strain behavior, under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics at elevated temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendixes. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, temperature control, temperature gradients, and data collection and reporting procedures are addressed. Tensile strength as used in this test method refers to the tensile strength obtained under monotonic uniaxial loading, where monotonic refers to a continuous nonstop test rate with no reversals from test initiation to final fracture.1.2 This test method applies primarily to advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), and tridirectional (3D) or other multi-directional reinforcements. In addition, this test method may also be used with glass (amorphous) matrix composites with 1D, 2D, 3D, and other multi-directional continuous fiber reinforcements. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

This specification covers pressure-rated composite pipe and fittings for the transport of hot or cold liquids, beverages, or gases that are compatible with the composite pipe and fittings. Composite pipe is produced using a butt welded aluminum pipe as a core, with an extruded inside layer of cross-linked polyethylene (PEX) or polyethylene (PE). An adhesive layer is used to bond the inside layer to the wall of the aluminum pipe. An outer layer of polyethylene (PE) and an adhesive layer are extruded to the outer wall of the aluminum pipe. The following test shall be performed to conform with the specified requirements: composite pipe and fittings qualification test; hydrostatic sustained pressure test; vacuum depression test; hot and cold pressure cycling; water hammer test; delamination; fusion line test; and gel content.1.1 This specification covers pressure-rated composite pipe and fittings for the transport of hot or cold liquids, beverages, or gases that are compatible with the composite pipe and fittings.1.2 Composite pipe is produced using a butt welded aluminum pipe as a core, with an extruded inside layer of crosslinked polyethylene (PEX) or polyethylene (PE). An adhesive layer is used to bond the inside layer to the wall of the aluminum pipe. An outer layer of polyethylene (PE) and an adhesive layer are extruded to the outer wall of the aluminum pipe.1.3 Composite pipe is produced in four configurations and referenced in Fig. 1, as Classes 1, 2, 3, and 4 composite pipe.1.4 This specification includes compression fittings and compression joints, which are referenced in . Compression fittings as described in this specification are not compatible for gas transportation. Threaded fittings are referenced in .1.5 The following precautionary caveat pertains only to the test method portion of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.6 The values stated in acceptable SI units are to be regarded as the standard. The values given in parentheses are provided for information only. The values stated in each system are not exact equivalents, therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is used to measure the apparent viscosity of hydrocarbon resins at elevated temperatures. Elevated temperature viscosity values of a hydrocarbon resin may be related to the properties of coatings, adhesives and the like, containing such a resin.5.2 For hydrocarbon resins, values of apparent viscosity will usually be a function of shear rate under the conditions of test. Although the type of viscometer described in this test method operates under conditions of relatively low shear rate, shear rate depends on the spindle and rotational speed selected for a determination; therefore, comparisons between apparent viscosity values should be made only for measurements made with similar viscometers under conditions of equivalent shear rate.1.1 This test method covers the determination of the apparent viscosity of hydrocarbon resins having apparent viscosities up to 2,000,000 millipascal seconds (mPa·s) (Note 1) at temperatures up to 300 °C [572 °F].NOTE 1: The SI unit of (dynamic) viscosity is the pascal second. The centipoise (cP) is one millipascal second (mPa·s) and is frequently used as a viscosity unit.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The significant features are typified by a discussion of the limitations of the technique. With the description and arrangement given in the following portions of this test method, the instrument will record directly the normal spectral emittance of a specimen. However, the following conditions must be met within acceptable tolerance, or corrections must be made for the specified conditions.5.1.1 The effective temperatures of the specimen and blackbody must be within 1 K of each other. Practical limitations arise, however, because the temperature uniformities are often not better than a few kelvins.5.1.2 The optical path length in the two beams must be equal, or, preferably, the instrument should operate in a nonabsorbing atmosphere, in order to eliminate the effects of differential atmospheric absorption in the two beams. Measurements in air are in many cases important, and will not necessarily give the same results as in a vacuum, thus the equality of the optical paths for dual-beam instruments becomes very critical.NOTE 4: Very careful optical alignment of the spectrophotometer is required to minimize differences in absorptance along the two paths of the instrument, and careful adjustment of the chopper timing to reduce “cross-talk” (the overlap of the reference and sample signals) as well as precautions to reduce stray radiation in the spectrophotometer are required to keep the zero line flat. With the best adjustment, the “100 % line” will be flat to within 3 %.5.1.3 Front-surface mirror optics must be used throughout, except for the prism in prism monochromators, and it should be emphasized that equivalent optical elements must be used in the two beams in order to reduce and balance attenuation of the beams by absorption in the optical elements. It is recommended that optical surfaces be free of SiO2 and SiO coatings: MgF2 may be used to stabilize mirror surfaces for extended periods of time. The optical characteristics of these coatings are critical, but can be relaxed if all optical paths are fixed during measurements or the incident angles are not changed between modes of operation (during 0 % line, 100 % line, and sample measurements). It is recommended that all optical elements be adequately filled with energy.5.1.4 The source and field apertures of the two beams must be equal in order to ensure that radiant flux in the two beams compared by the apparatus will pertain to equal areas of the sources and equal solid angles of emission. In some cases it may be desirable to define the solid angle of the source and sample when comparing alternative measurement techniques.5.1.5 The response of the detector-amplifier system must vary linearly with the incident radiant flux, or must be calibrated for linearity, and corrections made for observed deviations from linearity.1.1 This test method describes an accurate technique for measuring the normal spectral emittance of electrically nonconducting materials in the temperature range from 1000 to 1800 K, and at wavelengths from 1 to 35 μm. It is particularly suitable for measuring the normal spectral emittance of materials such as ceramic oxides, which have relatively low thermal conductivity and are translucent to appreciable depths (several millimetres) below the surface, but which become essentially opaque at thicknesses of 10 mm or less.1.2 This test method requires expensive equipment and rather elaborate precautions, but produces data that are accurate to within a few percent. It is particularly suitable for research laboratories, where the highest precision and accuracy are desired, and is not recommended for routine production or acceptance testing. Because of its high accuracy, this test method may be used as a reference method to be applied to production and acceptance testing in case of dispute.1.3 This test method requires the use of a specific specimen size and configuration, and a specific heating and viewing technique. The design details of the critical specimen furnace are presented in Ref (1),2 and the use of a furnace of this design is necessary to comply with this test method. The transfer optics and spectrophotometer are discussed in general terms.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 High-strength, monolithic advanced ceramic materials are generally characterized by small grain sizes (<50 μm) and bulk densities near the theoretical density. These materials are candidates for load-bearing structural applications requiring high degrees of wear and corrosion resistance and elevated-temperature strength. Although flexural test methods are commonly used to evaluate strength of advanced ceramics, the nonuniform stress distribution of the flexure specimen limits the volume of material subjected to the maximum applied stress at fracture. Uniaxially loaded tensile strength tests provide information on strength-limiting flaws from a greater volume of uniformly stressed material.4.3 Because of the probabilistic strength distributions of brittle materials such as advanced ceramics, a sufficient number of test specimens at each testing condition is required for statistical analysis and eventual design with guidelines for sufficient numbers provided in this test method. Size-scaling effects as discussed in Practice C1239 will affect the strength values. Therefore, strengths obtained using different recommended tensile test specimen geometries with different volumes or surface areas of material in the gage sections will be different due to these size differences. Resulting strength values can, in principle, be scaled to an effective volume or effective surface area of unity as discussed in Practice C1239.4.4 Tensile tests provide information on the strength and deformation of materials under uniaxial stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of testing mode, testing rate, processing or alloying effects, environmental influences, or elevated temperatures. These effects may be consequences of stress corrosion or sub-critical (slow) crack growth which can be minimized by testing at appropriately rapid rates as outlined in this test method.4.5 The results of tensile tests of specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire full-size end product or its in-service behavior in different environments.4.6 For quality control purposes, results derived from standardized tensile test specimens can be considered to be indicative of the response of the material from which they were taken for particular primary processing conditions and post-processing heat treatments.4.7 The tensile strength of a ceramic material is dependent on both its inherent resistance to fracture and the presence of flaws. Analysis of fracture surfaces and fractography as described in Practice C1322 and MIL-HDBK-790, though beyond the scope of this test method, are recommended for all purposes, especially for design data.1.1 This test method covers the determination of tensile strength under uniaxial loading of monolithic advanced ceramics at elevated temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendix. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, and data collection and reporting procedures are addressed. Tensile strength as used in this test method refers to the tensile strength obtained under uniaxial loading.1.2 This test method applies primarily to advanced ceramics which macroscopically exhibit isotropic, homogeneous, continuous behavior. While this test method applies primarily to monolithic advanced ceramics, certain whisker- or particle-reinforced composite ceramics as well as certain discontinuous fiber-reinforced composite ceramics may also meet these macroscopic behavior assumptions. Generally, continuous fiber ceramic composites (CFCCs) do not macroscopically exhibit isotropic, homogeneous, continuous behavior and application of this test method to these materials is not recommended.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 Sealants are generally subjected to stresses in end-use applications. This test method measures the heat resistance of sealants when subjected to dead load shear stresses while under heat.1.1 This test method covers a laboratory procedure for determining the heat resistance of sealants. This test method is conducted under dead load in a shear mode. This test method was previously written to include only hot applied sealants.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information purposes only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 The subcommittee with jurisdiction of this standard is not aware of any similar or equivalent ISO standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers gray iron castings exposed to elevated temperatures for non-pressure containing parts such as grate bars, stoker links, stoker parts, oil still furnace parts, firebox parts, ingot molds, glass molds, caustic pots, and metal melting pots. The three classes of gray iron covered here are: Class I, possessing superior thermal shock resistance; Class II, possessing average thermal shock resistance and moderately good tensile strength; and Class III, possessing a higher tensile strength than either Classes I or II. It is the intention of this specification to classify the irons in accordance with their carbon content equivalent, wherein the equation for its calculation is given herein. 1.1 This specification covers three classes of gray iron suitable for castings exposed to temperatures encountered in such service as grate bars, stoker links, stoker parts, oil still furnace parts, firebox parts, ingot molds, glass molds, caustic pots, and metal melting pots. Note 1: This specification is general, covering cast irons normally used for the above types of service, at temperatures as high as 1400 °F (760 °C). It is not intended to imply that all three classes are suitable throughout this entire temperature range without regard to actual service stresses. Some are suitable for long service at the lower temperatures only, unless low stresses are involved. 1.2 The three classes of gray iron covered by this specification are as follows: 1.2.1 Class I, possessing superior resistance to thermal shock, 1.2.2 Class II, possessing average resistance to thermal shock and a moderately good tensile strength (tensile strengths above 30 000 psi (207 MPa) may be expected), and 1.2.3 Class III, possessing a higher tensile strength than either Class I or II (tensile strengths as high as 40 000 psi (276 MPa) may be expected). 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The properties evaluated by this test method are intended to provide comparative information on the effects of fire-retardant chemical formulations and environmental conditions on the flexural properties and IB strength of FRSC panels.5.2 This practice uses a controlled elevated-temperature environment to produce temperature-induced losses in the mechanical properties of FRSC panels and untreated panels.5.3 Prediction of performance in natural environments has not been directly correlated with the results of this test method.5.4 The reproducibility of results in elevated-temperature exposure is highly dependent on the type of specimens tested and the evaluation criteria selected, as well as the control of the operating variables. In any testing program, sufficient replicates shall be included to establish the variability of the results. Variability is often observed when similar specimens are tested in different chambers even though the testing conditions are nominally similar and within the ranges specified in this test method.1.1 This test method is designed as a laboratory screening test. It is intended to establish an understanding of the respective contributions of the many wood material, fire-retardant, resin and processing variables, and their interactions, upon the mechanical properties of fire-retarded mat-formed wood structural composite (FRSC) panels as they affect flexural and internal bond (IB) performance and as they are often affected later during exposure to high temperature and humidity. Once the critical material and processing variables have been identified through these small-specimen laboratory screening tests, additional testing and evaluation shall be required to determine the effect of the treatment on the panel structural properties and the effect of exposure to high temperature on the properties of commercially produced FRSC panels. In this test method, treated structural composite panels are exposed to a temperature of 77°C (170°F) and at least 50% relative humidity.1.2 The purpose of the preliminary laboratory-based test method is to compare the flexural properties and IB strength of FRSC panels relative to untreated structural composite panels with otherwise identical manufacturing parameters. The results of tests conducted in accordance with this test method provide a reference point for estimating strength temperature relationships for preliminary purposes. They establish a starting point for subsequent full-scale testing of commercially produced FRSC panels.1.3 This test method does not cover testing and evaluation requirements necessary for product certification and qualification or the establishment of design value adjustment factors for FRSC panels.NOTE 1: One potentially confounding limitation of this preliminary screening test method is that it may be conducted with laboratory panels that may not necessarily represent commercial quality panels. A final qualification program should likely be conducted using commercial quality panels and the scope of the review should include evaluation of the effects of the treatment and elevated temperature exposure on all relevant mechanical properties of the commercially produced panel.1.4 This test method is not intended for use with structural plywood.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to measure the apparent viscosity of asphalts at handling, mixing, or application temperatures.5.2 Some asphalts may exhibit non-Newtonian behavior under the conditions of this test method, or at temperatures within the range of this test method. Since non-Newtonian viscosity values are not absolute properties, but reflect the behavior of the fluid within the particular measurement system, it should be recognized that measurements made by this test method may not always predict field performance under the conditions of use.5.3 Comparisons between non-Newtonian viscosity values should be made only for measurements made with similar conditions of temperature, shear rate, and shear history.1.1 This test method outlines a procedure for measuring the apparent viscosity of asphalt from 40 to 260 °C [100 to 500 °F] using a rotational viscometer and a temperature-controlled thermal chamber for maintaining the test temperature.1.2 The values stated in either SI units or cgs and inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See 10.6 for specific precautionary information.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 Measuring the modulus of rupture of refractories at elevated temperatures has become a widely accepted means to evaluate materials at service temperatures. Many consumer companies have specifications based on this type of test.3.2 This test method is limited to furnaces operating under oxidizing conditions. However, with modifications for atmosphere control in other test furnaces, the major criteria of this test procedure may be employed without change.3.3 This test method is designed for progressive application of a force or stress on a specimen supported as a simple beam with center-point loading. Test apparatus designed for the progressive application of a strain may yield different results, especially since refractory materials will reach a semiplastic state at elevated temperatures where Hooke's law does not apply, that is, stress is then not proportional to strain.3.4 This test method applies to fired dense refractory brick and shapes, chemically bonded brick and shapes, shapes formed from castables, plastics, or ramming materials, and any other refractory that can be formed to the required specimen dimension.1.1 This test method covers determination of the high-temperature modulus of rupture of refractory brick or monolithic refractories in an oxidizing atmosphere and under action of a force or stress that is increased at a constant rate.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 For many structural ceramic components in service, their use is often limited by lifetimes that are controlled by a process of slow crack growth. This test method provides the empirical parameters for appraising the relative slow crack growth susceptibility of ceramic materials under specified environments at elevated temperatures. This test method is similar to Test Method C1368 with the exception that provisions for testing at elevated temperatures are given. Furthermore, this test method may establish the influences of processing variables and composition on slow crack growth as well as on strength behavior of newly developed or existing materials, thus allowing tailoring and optimizing material processing for further modification. In summary, this test method may be used for material development, quality control, characterization, and limited design data generation purposes.NOTE 3: Data generated by this test method do not necessarily correspond to crack velocities that may be encountered in service conditions. The use of data generated by this test method for design purposes may entail considerable extrapolation and loss of accuracy.4.2 In this test method, the flexural stress computation is based on simple beam theory, with the assumptions that the material is isotropic and homogeneous, the moduli of elasticity in tension and compression are identical, and the material is linearly elastic. The average grain size should be no greater than one fiftieth (1/50) of the beam thickness.4.3 In this test method, the test specimen sizes and test fixtures were chosen in accordance with Test Method C1211, which provides a balance between practical configurations and resulting errors, as discussed in Refs (5, 6). Only the four-point test configuration is used in this test method.4.4 In this test method, the slow crack growth parameters (n and D) are determined based on the mathematical relationship between flexural strength and applied stress rate, log σf = [1/(n + 1)] log σ˙ + log D, together with the measured experimental data. The basic underlying assumption on the derivation of this relationship is that slow crack growth is governed by an empirical power-law crack velocity, v = A[KI /KIC]n (see Appendix X1).NOTE 4: There are various other forms of crack velocity laws which are usually more complex or less convenient mathematically, or both, but may be physically more realistic (7). The mathematical analysis in this test method does not cover such alternative crack velocity formulations.4.5 In this test method, the mathematical relationship between flexural strength and stress rate was derived based on the assumption that the slow crack growth parameter is at least n ≥ 5 (1, 8). Therefore, if a material exhibits a very high susceptibility to slow crack growth, that is, n < 5, special care should be taken when interpreting the results.4.6 The mathematical analysis of test results according to the method in 4.4 assumes that the material displays no rising R-curve behavior, that is, no increasing fracture resistance (or crack-extension resistance) with increasing crack length. It should be noted that the existence of such behavior cannot be determined from this test method. The analysis further assumes that the same flaw types control strength over the entire test range. That is, no new flaws are created, and the flaws that control the strength at the highest stress rate control the strength at the lowest stress rate.4.7 Slow crack growth behavior of ceramic materials can vary as a function of mechanical, material, thermal, and environmental variables. Therefore, it is essential that test results accurately reflect the effects of specific variables under study. Only then can data be compared from one investigation to another on a valid basis, or serve as a valid basis for characterizing materials and assessing structural behavior.4.8 The strength of advanced ceramics is probabilistic in nature. Therefore, slow crack growth that is determined from the flexural strengths of a ceramic material is also a probabilistic phenomenon. Hence, a proper range and number of test rates in conjunction with an appropriate number of specimens at each test rate are required for statistical reproducibility and design (2). Guidance is provided in this test method.NOTE 5: For a given ceramic material/environment system, the SCG parameter n is independent of specimen size, although its reproducibility is dependent on the variables previously mentioned. By contrast, the SCG parameter D depends significantly on strength, and thus on specimen size (see Eq X1.7).4.9 The elevated-temperature strength of a ceramic material for a given test specimen and test fixture configuration is dependent on its inherent resistance to fracture, the presence of flaws, test rate, and environmental effects. Analysis of a fracture surface, fractography, though beyond the scope of this test method, is highly recommended for all purposes, especially to verify the mechanism(s) associated with failure (refer to Practice C1322).1.1 This test method covers the determination of slow crack growth (SCG) parameters of advanced ceramics by using constant stress-rate flexural testing in which flexural strength is determined as a function of applied stress rate in a given environment at elevated temperatures. The strength degradation exhibited with decreasing applied stress rate in a specified environment is the basis of this test method which enables the evaluation of slow crack growth parameters of a material.NOTE 1: This test method is frequently referred to as “dynamic fatigue” testing (1-3)2 in which the term “fatigue” is used interchangeably with the term “slow crack growth.” To avoid possible confusion with the “fatigue” phenomenon of a material which occurs exclusively under cyclic loading, as defined in Terminology E1823, this test method uses the term “constant stress-rate testing” rather than “dynamic fatigue” testing.NOTE 2: In glass and ceramics technology, static tests of considerable duration are called “static fatigue” tests, a type of test designated as stress-rupture (Terminology E1823).1.2 This test method is intended primarily to be used for negligible creep of test specimens, with specific limits on creep imposed in this test method.1.3 This test method applies primarily to advanced ceramics that are macroscopically homogeneous and isotropic. This test method may also be applied to certain whisker- or particle-reinforced ceramics that exhibit macroscopically homogeneous behavior.1.4 This test method is intended for use with various test environments such as air, vacuum, inert, and any other gaseous environments.1.5 Values expressed in this standard test are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, quality control, characterization, and design data generation purposes. This test method is intended to be used with ceramics whose flexural strength is ∼50 MPa (∼7 ksi) or greater.4.2 The flexure stress is computed based on simple beam theory, with assumptions that the material is isotropic and homogeneous, the moduli of elasticity in tension and compression are identical, and the material is linearly elastic. The average grain size should be no greater than 1/50 of the beam thickness. The homogeneity and isotropy assumptions in the test method rule out the use of it for continuous fiber-reinforced composites for which Test Method C1341 is more appropriate.4.3 The flexural strength of a group of test specimens is influenced by several parameters associated with the test procedure. Such factors include the testing rate, test environment, specimen size, specimen preparation, and test fixtures. Specimen and fixture sizes were chosen to provide a balance between the practical configurations and resulting errors as discussed in Test Method C1161, and Refs (1-3).4 Specific fixture and specimen configurations were designated in order to permit the ready comparison of data without the need for Weibull size scaling.4.4 The flexural strength of a ceramic material is dependent on both its inherent resistance to fracture and the size and severity of flaws. Variations in these cause a natural scatter in test results for a sample of test specimens. Fractographic analysis of fracture surfaces, although beyond the scope of this test method, is highly recommended for all purposes, especially if the data will be used for design as discussed in Ref (4) and Practices C1322 and C1239.4.5 This method determines the flexural strength at elevated temperature and ambient environmental conditions at a nominal, moderately fast testing rate. The flexural strength under these conditions may or may not necessarily be the inert flexural strength. Flexure strength at elevated temperature may be strongly dependent on testing rate, a consequence of creep, stress corrosion, or slow crack growth. If the purpose of the test is to measure the inert flexural strength, then extra precautions are required and faster testing rates may be necessary.NOTE 6: Many ceramics are susceptible to either environmentally assisted slow crack growth or thermally activated slow crack growth. Oxide ceramics, glasses, glass ceramics, and ceramics containing boundary phase glass are particularly susceptible to slow crack growth. Time-dependent effects that are caused by environmental factors (for example, water as humidity in air) may be minimized through the use of inert testing atmosphere such as dry nitrogen gas or vacuum. Alternatively, testing rates faster than specified in this standard may be used if the goal is to measure the inert strength. Thermally activated slow crack growth may occur at elevated temperature even in inert atmospheres. Testing rates faster than specified in this standard should be used if the goal is to measure the inert flexural strength. On the other hand, many ceramics such as boron carbide, silicon carbide, aluminum nitride, and many silicon nitrides have no sensitivity to slow crack growth at room or moderately elevated temperatures and for such materials, the flexural strength measured under laboratory ambient conditions at the nominal testing rate is the inert flexural strength.4.6 The three-point test configuration exposes only a very small portion of the specimen to the maximum stress. Therefore, three-point flexural strengths are likely to be much greater than four-point flexural strengths. Three-point flexure has some advantages. It uses simpler test fixtures, it is easier to adapt to high temperature, and it is sometimes helpful in Weibull statistical studies. However, four-point flexure is preferred and recommended for most characterization purposes.4.7 The three-point test configuration exposes only a very small portion of the specimen to the maximum stress. Therefore, three-point flexural strengths are likely to be much greater than four-point flexural strengths. Three-point flexure has some advantages. It uses simpler test fixtures, it is easier to adapt to high temperature, and it is sometimes helpful in Weibull statistical studies. However, four-point flexure is preferred and recommended for most characterization purposes.1.1 This test method covers determination of the flexural strength of advanced ceramics at elevated temperatures.2 Four-point-1/4-point and three-point loadings with prescribed spans are the standard as shown in Fig. 1. Rectangular specimens of prescribed cross-section are used with specified features in prescribed specimen-fixture combinations. Test specimens may be 3 by 4 by 45 to 50 mm in size that are tested on 40-mm outer span four-point or three-point fixtures. Alternatively, test specimens and fixture spans half or twice these sizes may be used. The test method permits testing of machined or as-fired test specimens. Several options for machining preparation are included: application matched machining, customary procedures, or a specified standard procedure. This test method describes the apparatus, specimen requirements, test procedure, calculations, and reporting requirements. The test method is applicable to monolithic or particulate- or whisker-reinforced ceramics. It may also be used for glasses. It is not applicable to continuous fiber-reinforced ceramic composites.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This practice establishes the controls necessary for production of extrusions cooled from an elevated temperature shaping (extrusion) process for the production of T1, T2, T5 and T10–type tempers. The equipment shall be used for billet preheating, extruding and quenching. Quenching methods may consist of, but are not limited to, air, water or water/glycol mixture in forced air, water spray, fog or mist, standing wave, a quench tank or another pressurized water device, or a combination thereof. Surveillance tests should include tensile properties for all material and metallographic examination to confirm that the elevated temperature shaping process has not resulted in eutectic melting or subsurface porosity from hydrogen diffusion. Specimens shall be sectioned in the plane perpendicular to the direction of the extrusion, polished to an appropriate fineness, mildly etched with an etchant such as Keller’s reagent to reveal any evidence of eutectic melting. Specimens shall also be subjected to tension and hardness tests. During the extrusion process, the following temperature measuring points should be monitored and controlled as per the producer’s internal procedures. The measuring points include but are not limited to: billet or log temperature in the heating equipment, billet or log temperature after heating and before charging into the extrusion press, temperature of the extrudate at the press exit, temperature of the extrudate at quench entry, temperature of the extrudate at the completion of quench, and billet temperature shall not exceed the maximum temperature for the alloy. Artificial aging shall be accomplished using times and temperatures as necessary to achieve required properties.1.1 This practice establishes the controls necessary for production of extrusions cooled from an elevated temperature shaping (extrusion) process for the production of T1, T2, T5 and T10-type tempers (see ANSI H35.1/H35.1M).1.2 This practice is for production of extruded product supplied in the 6xxx and 7xxx alloys shown in Table 1 in the T1, T2, T5 or T10-type tempers (see ANSI H35.1/H35.1M). It contains pertinent information to be used in establishing production practices and is descriptive rather than prescriptive. For the attainment of T3, T4, T6, T7, T8 and T9-type tempers by extrusion press solution heat treatment, refer to Practice B807/B807M.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The elevated temperature and moisture conditioning procedures prescribed in this practice are designed to provide a standard procedure to be used to evaluate and compare the effect of elevated temperature and moisture conditioning under controlled laboratory conditions on pultruded FRP composites to be used in structural design applications. The conditioning procedures prescribed in this practice are designed to obtain reproducible results to compare and evaluate these materials but are not intended to produce equilibrium conditions or actual service conditions for these materials.1.1 In general, it is feasible that the mechanical properties of FRP composites will be affected by environmental conditions such as exposure to moisture at elevated temperatures. In order to make reliable comparisons between different materials under elevated temperature and moisture environmental conditions, it is necessary to standardize the elevated temperature and moisture conditions to which specimens of these materials are subjected prior to and during testing. This practice defines procedures for elevated temperature and moisture conditioning of pultruded FRP composites intended for use in structural design applications. The conditioning medium representing elevated temperature and moisture exposure described in this standard practice is distilled water maintained at 37.8 ± 1.5°C [100 ± 3°F] for 1000 hours.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems has the potential to result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
53 条记录,每页 15 条,当前第 2 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页