微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 Permeameters require the use of yokes to complete the magnetic circuit and are therefore inherently less accurate than ring test methods. Refer to Test Method A596/A596M for further details on ring test methods. However, when testing certain shapes as bars or when magnetic field strength in excess of 200 Oe [16 kA/m] is required, permeameters are the only practical means of measuring magnetic properties. 3.2 This test method is suitable for specification acceptance, service evaluation, research and development and design. 3.3 When the test specimen is fabricated from a larger sample and is in the same condition as the larger sample, it may not exhibit magnetic properties representative of the original sample. In such instances the test results, when viewed in context of past performance history, will be useful for judging the suitability of the material for the intended application. 1.1 This test method provides dc permeameter tests for the basic magnetic properties of soft magnetic materials in the form of bars, rods, wire, or strip specimens which may be cut, machined, or ground from cast, compacted, sintered, forged, extruded, rolled, or other fabricated materials. It includes tests for determination of the normal induction under symmetrically cyclically magnetized (SCM) conditions and the hysteresis loop (B-H loop) taken under conditions of rapidly changing or steep wavefront reversals of the direct current magnetic field strength. This method has been historically referred to as the ballistic test method. For testing hard or permanent magnet materials, Test Method A977/A977M shall be used. 1.2 This test method shall be used in conjunction with Practice A34/A34M. 1.3 This test method covers a range of magnetic field strength in the specimen from about 0.05 Oe [4 A/m] up to above 5000 Oe [400 kA/m] through the use of several permeameters. The separate permeameters cover this test region in several overlapping ranges. 1.4 Normal induction and hysteresis properties may be determined over the magnetic flux density range from essentially zero to the saturation induction for most materials. 1.5 Recommendations of the useful magnetic field strength range for each of the permeameters are shown in Table 1.2 Permeameters particularly well suited for general testing of soft magnetic materials are shown in boldface. Also, see Sections 3 and 4 for general limitations relative to the use of permeameters. 1.6 The symbols and abbreviated definitions used in this test method appear with Fig. 1 and in appropriate sections of this document. For the official definitions, see Terminology A340. Note that the term magnetic flux density used in this document is synonymous with the term magnetic induction. FIG. 1 Basic Circuit Using Permeameter Note 1:  A1—Multirange ammeter (main current) A2—Multirange ammeter (hysteresis current) B—Magnetic flux density test position for Switch S3 F—Electronic Fluxmeter H—Magnetic field strength test position for Switch S3 N1—Magnetizing coil N2—Magnetic flux sensing (B) coil N3—Magnetic field strength (H) sensing coil R1—Main current control rheostat R2—Hysteresis current control rheostat S1—Reversing switch for magnetizing current S2—Shunting switch for hysteresis current control rheostat S3—Fluxmeter selector switch SP—Specimen 1.7 Warning—Mercury has been designated by EPA and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA’s website (http://www.epa.gov/mercury/faq.htm ) for additional information. Users should be aware that selling mercury or mercury-containing products, or both, in your state may be prohibited by state law. 1.8 The values and equations stated in customary (cgs-emu and inch-pound) or SI units are to be regarded separately as standard. Within this standard, SI units are shown in brackets except for the sections concerning calculations where there are separate sections for the respective unit systems. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this standard. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

3.1 This test method is a fundamental method for evaluating the magnetic performance of flat-rolled magnetic materials in either as-sheared or stress-relief annealed condition.3.2 This test method is suitable for design, specification acceptance, service evaluation, and research and development.1.1 This test method covers tests for the magnetic properties of basic flat-rolled magnetic materials at power frequencies (25 to 400 Hz) using a 25-cm Epstein test frame and the 25-cm double-lap-jointed core. It covers the determination of core loss, rms exciting power, rms and peak exciting current, and several types of ac permeability and related properties of flat-rolled magnetic materials under ac magnetization.1.2 This test method shall be used in conjunction with Practice A34/A34M.1.3 This test method2 provides a test for core loss and exciting current at moderate and high magnetic flux densities up to 15 kG [1.5 T] on nonoriented electrical steels and up to 18 kG [1.8 T] on grain-oriented electrical steels.1.4 The frequency range of this test method is normally that of the commercial power frequencies 50 to 60 Hz. With proper instrumentation, it is also acceptable for measurements at other frequencies from 25 to 400 Hz.1.5 This test method also provides procedures for calculating ac impedance permeability from measured values of rms exciting current and for ac peak permeability from measured peak values of total exciting currents at magnetic field strengths up to about 150 Oe [12 000 A/m].1.6 Explanation of symbols and abbreviated definitions appear in the text of this test method. The official symbols and definitions are listed in Terminology A340.1.7 The values and equations stated in customary (cgs-emu and inch-pound) or SI units are to be regarded separately as standard. Within this standard, SI units are shown in brackets except for the sections concerning calculations where there are separate sections for the respective unit systems. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method for the analysis of fine gold is primarily intended to test such material for compliance with compositional specifications. It is assumed that all who use this test method will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory and operated in accordance with Guide E882.1.1 This test method covers the analysis of refined gold for the following elements having the following chemical composition limits:Element Content Range, µg/gCopper 17 to 300Iron  6 to 150Lead 17 to 100Palladium  7 to 350Silver 17 to 5001.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This test method evaluates the performance of flat-rolled magnetic materials over a wide frequency range of ac excitation with and without incremental dc bias, as used on transformers, motors, and other laminated core devices.4.2 This test method is suitable for design, specification acceptance, service evaluation, and research.4.3 The application of test results obtained with this test method to the design or evaluation of a particular magnetic device must recognize the influence of the magnetic circuitry upon its performance. Some specific items to consider are size, shape, holes, welding, staking, bolting, bracketing, shorting between laminations, ac waveform, adjacent magnetic fields, and stress.1.1 This test method covers the determination of the magnetic properties of flat-rolled magnetic materials using Epstein test specimens with double-lap joints in the 25-cm Epstein frame. It covers determination of core loss, rms and peak exciting current, exciting power, magnetic field strength, and permeability. This test method is commonly used to test grain-oriented and nonoriented electrical steels but may also be used to test nickel-iron, cobalt-iron, and other flat-rolled magnetic materials.1.2 This test method shall be used in conjunction with Practice A34/A34M and Test Method A343/A343M.1.3 Tests under this test method may be conducted with either normal ac magnetization or with ac magnetization and superimposed dc bias (incremental magnetization).1.4 In general, this test method has the following limitations:1.4.1 Frequency—The range of this test method normally covers frequencies from 100 to 10 000 Hz. With proper equipment, the test method may be extended above 10 000 Hz. When tests are limited to the use of power sources having frequencies below 100 Hz, they shall use the procedures of Test Method A343/A343M.1.4.2 Magnetic Flux Density  (may also be referred to as Flux Density)—The range of magnetic flux density for this test method is governed by the test specimen properties and by the available instruments and other equipment components. Normally, for many materials, the magnetic flux density range is from 1 to 15 kG [0.1 to 1.5 T].1.4.3 Core Loss and Exciting Power—These measurements are normally limited to test conditions that do not cause a test specimen temperature rise in excess of 50°C or exceed 100 W/lb [220 W/kg].1.4.4 Excitation—Either rms or peak values of exciting current may be measured at any test point that does not exceed the equipment limitations provided that the impedance of the ammeter shunt is low and its insertion into the test circuit does not cause appreciably increased voltage waveform distortion at the test magnetic flux density.1.4.5 Incremental Properties—Measurement of incremental properties shall be limited to combinations of ac and dc excitations that do not cause secondary voltage waveform distortion, as determined by the form factor method, to exceed a shift of 10 % away from sine wave conditions.1.5 The values and equations stated in customary (cgs-emu and inch-pound) or SI units are to be regarded separately as standard. Within this standard, SI units are shown in brackets except for the sections concerning calculations where there are separate sections for the respective unit systems. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Current carrying capacity is used by designers and manufacturers of electronic interface circuitry to ensure that the membrane switch can reliably handle the loads occurring in normal use and under extreme circumstances. A thorough understanding of CCC allows manufacturers to take it into account when developing design rules for membrane switches.4.2 Failures due to exceeding the CCC of a circuit may take the form of a significant change in conductor resistance, insulation breakdown (shorts), or conductor breakdown (opens).4.3 Since a number of design parameters, such as trace width, ink film thickness, and heat transfer (mounting substrates, active cooling such as fans) affect the final test results, any conclusions should only be applied to specific designs, rather than to a general combination of materials.4.4 Current carrying capacity tests may be destructive and units that have been tested should be considered unreliable for future use.4.5 Current carrying capacity may be significantly different for static loads and dynamic (that is, cycling) loads. Failure modes are also generally different.4.6 The use of a thermocouple to monitor the temperature of the UUT may be helpful to monitor the progress of the test.4.7 Initial expected starting current should be calculated in advance to prevent damage to test equipment.1.1 This test method covers the determination of the current carrying capacity of a conductor as part of a membrane switch.1.2 This test method may be used to test a circuit to destruction, that is, to determine its maximum current carrying capacity, or it may be used to test the ability of a circuit to withstand a desired current level.1.3 This test method applies only to static conditions, and does not apply to contact closure cycling of a membrane switch under current load (test method forthcoming).1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Solid-state electronic devices subjected to stresses from excessive current pulses sometimes fail because a portion of the metallization fuses or vaporizes (suffers burnout). Burnout susceptibility can vary significantly from component to component on a given wafer, regardless of design. This practice provides a procedure for establishing the limits of pulse current overstress within which the metallization of a given device should survive.4.2 This practice can be used as a destructive test in a lot-sampling program to determine the boundaries of the safe operating region having desired survival probabilities and statistical confidence levels when appropriate sample quantities and statistical analyses are used.Note 2—The practice may be extended to infer the survivability of untested metallization adjacent to the specimen metallization on a semiconductor die or wafer if care is taken that appropriate similarities exist in the design and fabrication variables.1.1 This practice covers procedures for determining operating regions that are safe from metallization burnout induced by current pulses of less than 1-s duration.Note 1—In this practice, “metallization” refers to metallic layers on semiconductor components such as interconnect patterns on integrated circuits. The principles of the practice may, however, be extended to nearly any current-carrying path. The term “burnout” refers to either fusing or vaporization.1.2 This practice is based on the application of unipolar rectangular current test pulses. An extrapolation technique is specified for mapping safe operating regions in the pulse-amplitude versus pulse-duration plane. A procedure is provided in Appendix X2 to relate safe operating regions established from rectangular pulse data to safe operating regions for arbitrary pulse shapes.1.3 This practice is not intended to apply to metallization damage mechanisms other than fusing or vaporization induced by current pulses and, in particular, is not intended to apply to long-term mechanisms, such as metal migration.1.4 This practice is not intended to determine the nature of any defect causing failure.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This test method covers the measurement of MOSFET (Note 1) drain leakage current.Note 1—MOS is an acronym for metal-oxide semiconductor; FET is an acronym for field-effect transistor.1.2 This test method is applicable to all enhancement-mode and depletion-mode MOSFETs. This test method specifies positive voltage and current, conventions specifically applicable to n-channel MOSFETs. The substitution of negative voltage and negative current makes the method directly applicable to p-channel MOSFETs.1.3 This d-c test method is applicable for the range of drain voltages greater than 0 V but less than the drain breakdown voltage.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Eddy current testing is a nondestructive method of locating discontinuities in a product. Changes in electromagnetic response caused by the presence of discontinuities are detected by the sensor, amplified and modified in order to actuate audio or visual indicating devices, or both, or a mechanical marker. Signals can be caused by outer surface, inner surface, or subsurface discontinuities. The eddy current examination is sensitive to many factors that occur as a result of processing (such as variations in conductivity, chemical composition, permeability, and geometry) as well as other factors not related to the tubing. Thus, all received indications are not necessarily indicative of defective tubing.1.1 This practice2 covers procedures for eddy current examination of seamless and welded tubular products made of relatively low conductivity materials such as titanium, stainless steel, and similar alloys, such as nickel alloys. Austenitic chromium-nickel stainless steels, which are generally considered to be nonmagnetic, are specifically covered as distinguished from the martensitic and ferritic straight chromium stainless steels which are magnetic.1.2 This practice is intended as a guide for eddy current examination of both seamless and welded tubular products using either an encircling coil or a probe-coil technique. Coils and probes are available that can be used inside the tubular product; however, their use is not specifically covered in this document. This type of examination is usually employed only to examine tubing which has been installed such as in a heat exchanger.1.3 This practice covers the examination of tubular products ranging in diameter from 0.125 to 5 in. (3.2 to 127.0 mm) and wall thicknesses from 0.005 to 0.250 in. (0.127 to 6.4 mm).1.4 For examination of aluminum alloy tubular products, see standard Practice E215.1.5 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 When zirconium materials are used in nuclear applications, it is necessary that hafnium, a neutron absorber, be present only at very low concentrations.5.2 This test method is useful in testing materials for compliance with the compositional requirements as given in Specifications B349/B349M, B350/B350M, B351/B351M, B352/B352M, B353, B493, B494/B494M, B495, B523/B523M, B550/B550M, B551/B551M, B653/B653M, B658/B658M, B752, and B811.1.1 This test method covers the determination of hafnium in zirconium and zirconium alloys with composition greater than 0.003 % (30 mg/kg).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The permeability determined by this method is the impedance permeability. Impedance permeability is the ratio of the peak value of flux density (Bmax) to the assumed peak magnetic field strength (Hz) without regard to phase. As compared to testing under sinusoidal flux (sinusoidal B) conditions, the permeabilities determined by this method are numerically lower since, for a given test signal frequency, the rate of flux change (dB/dt) is higher.4.2 This test method is suitable for impedance permeability measurements at very low magnetic inductions at power frequencies (50 Hz to 60 Hz) to moderate inductions below the point of maximum permeability of the material (the knee of the magnetization curve) or until there is visible distortion of the current waveform. The lower limit is a function of sample area, secondary turns, and the sensitivity of the flux-reading voltmeter used. At higher inductions, measurements of flux-generated voltages that are appreciably distorted mean that the flux has appreciable harmonic frequency components. The upper limit is given by the availability of pure sinusoidal current, which is a function of the power source. In addition, a large ratio (≥10) of the total series resistance of the primary circuit to the primary coil impedance is required. With proper test apparatus, this test method is suitable for use at frequencies up to 1 MHz.4.3 This test method is suitable for design, specification acceptance, service evaluation, quality control, and research use.1.1 This test method provides a means for determination of the impedance permeability (μz) of ferromagnetic materials under the condition of sinusoidal current (sinusoidal H) excitation. Test specimens in the form of laminated toroidal cores, tape-wound toroidal cores, and link-type laminated cores having uniform cross sections and closed flux paths (no air gaps) are used. The method is intended as a means for determining the magnetic performance of ferromagnetic strip having a thickness less than or equal to 0.025 in. [0.635 mm].1.2 This test method shall be used in conjunction with those applicable paragraphs in Practice A34/A34M.1.3 The values and equations stated in customary (cgs-emu and inch-pound) or SI units are to be regarded separately as standard. Within this standard, SI units are shown in brackets except for the sections concerning calculations where there are separate sections for the respective unit systems. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Hysteresigraphs permit more rapid and efficient collection of data as compared to the point by point ballistic Test Methods A341/A341M and A596/A596M. The high measurement point density offered by computer-automated systems is often required for computer aided design of electrical components such as transformers, motors, and relays.5.2 Hysteresigraphs are particularly desirable for testing of semi-hard and hard magnetic materials, where either the entire second quadrant (demagnetization curve) or entire hysteresis loop is of primary concern. Test Method A977/A977M describes the special requirements for accurate measurement of hard magnetic (permanent magnet) materials.5.3 Hysteresigraphs are not recommended for measurement of initial permeability, µi, of materials with high magnetic permeability such as nickel-iron, amorphous, and nanocrystalline materials due to errors associated with integrator drift; in these cases, Test Method A596/A596M is a more appropriate method.5.4 Provided the test specimen is representative of the bulk sample or lot, this test method is well suited for design, specification acceptance, service evaluation, and research and development.1.1 This test method provides dc hysteresigraph procedures for the determination of basic magnetic properties of materials in the form of ring, spirally wound toroidal, link, double-lapped Epstein cores, or other standard shapes that may be cut, stamped, machined, or ground from cast, compacted, sintered, forged, or rolled materials. It includes tests for initial and normal magnetization curves and hysteresis loop determination taken under conditions of continuous sweep magnetization. Rate of sweep may be varied, either manually or automatically at different portions of the curves during measurement.1.2 The equipment and procedures described in this test method are most suited for soft and semi-hard materials with intrinsic coercivity less than about 100 Oersteds [8 kA/M]. Materials with higher intrinsic coercivities should be tested according to Test Method A977/A977M.1.3 The values and equations stated in customary (cgs-emu and inch-pound) or SI units are to be regarded separately as standard. Within this standard, SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
123 条记录,每页 15 条,当前第 5 / 9 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页