微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
AS 1828-1984 Electrical equipment for explosive atmospheres - Cable glands 现行 发布日期 :  1984-10-05 实施日期 : 

定价: 345元 / 折扣价: 294 加购物车

在线阅读 收 藏

5.1 Thermocouples fabricated from thermocouple cable that has been contaminated by moisture or by other impurities may undergo large changes in thermoelectric properties or may fail catastrophically when exposed to high temperatures. Since such contamination usually lowers the electrical resistance between the thermoelements and the sheath substantially, measurement of the insulation resistance can provide a valuable check of insulation quality and cleanliness, and can serve as a basis for rejection of unsuitable material and unreliable components. For manufacturers in particular, low electrical insulation resistance can also be indicative of displaced thermoelements or conductors or defects in the metal sheath which will require further investigation, but all users should be aware of these potential defects when faced with an unacceptable insulation resistance measurement.5.2 This test method is primarily intended for use by manufacturers and users of mineral-insulated, metal-sheathed (MIMS) thermocouples or MIMS cables to verify that measured values of insulation resistance exceed specified minimum values, such as those listed in Specifications E235, E585/E585M, E608/E608M, E2181/E2181M, and E2821. Manufacturers and users should be aware, however, that when the insulation resistance is greater than 1 × 108 Ω, disagreement by an order of magnitude in the results obtained with this test method is not unusual. In addition, users of this test method should appreciate that the room temperature insulation resistance of both MIMS cables and of finished thermocouples will change during shipment, storage, and use if the end seals are damaged or defective. Consequently, values of insulation resistance determined by this test method may not necessarily be repeatable.1.1 This test method provides the procedures for measuring the room temperature electrical insulation resistance between the thermoelements and between the thermoelements and the sheath, of a mineral-insulated, metal-sheathed (MIMS) thermocouple or mineral-insulated, metal-sheathed (MIMS) thermocouple cable or between the conductors and between the conductors and the sheath, of mineral-insulated, metal-sheathed (MIMS) cable used for industrial resistance thermometers. It may be used to measure the insulation resistance of bulk lengths of mineral-insulated, metal-sheathed MIMS cable previously sealed against moisture intrusion or to test a thermocouple having an ungrounded measuring junction. This method cannot be used to test a thermocouple having a grounded measuring junction unless the measuring junction is removed prior to testing, after which the thermocouple may be dealt with in the same manner as a mineral-insulated, metal-sheathed (MIMS) cable.1.2 This test method applies primarily to thermocouple cables and cable used for industrial resistance thermometers conforming to Specifications E585/E585M, E2181/E2181M, and E2821 and to thermocouples conforming to Specifications E608/E608M and E2181/E2181M, but may also be applied to thermocouples or MIMS cables that are suitable for use in air, whose sheath or thermoelements or conductors are comprised of refractory metals, that are tested in a dry and chemically inert environment, and that may employ compacted ceramic insulating materials other than magnesia (MgO) or alumina (Al2O3). Users of this test method should note that specifications dealing with compacted ceramic insulating materials other than magnesia or alumina, which are described in Specification E1652, are not currently available. As a result, acceptance criteria must be agreed upon between the customer and supplier at the time of purchase, or alternatively, judgment and experience must be applied in establishing test voltage levels and acceptable insulation resistance values for these types of thermocouples and MIMS cables.1.3 This test method may be used for thermocouples or MIMS cables having an outside diameter of 0.5 mm (0.020 in.) or larger.1.4 Users of this test method should be aware that the room temperature insulation resistance of a mineral-insulated, metal-sheathed thermocouple or MIMS cable will change during shipment, storage, or use if they are not properly sealed.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers a variety of compounds used for flooding the shields and armors of telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating along or through the cable sheath. The material may be of any chemical composition suitable for the intended purpose and should meet the requirements specified. The flooding compound shall display adhesive properties to provide adhesion between metallic sheath elements and the outer jacket materials of wire and cable. All flooding compounds manufactured in conformance to this specification shall meet the following requirements: homogeneity and foreign material.1.1 This specification covers a variety of compounds used for flooding the shields and armors of telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating along or through the cable sheath. (For related standards see Specifications D4731 and D4732.)1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers a variety of petroleum-based and other compounds used for filling the air spaces in telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating through the cable structure. The two basic types of filling compounds are specified: Type I which are general-purpose filling compounds that include all materials to be used for filling cables that are not required to function under electrical stress and Type II which are electrical-type filling compounds that include materials having prescribed electrical properties and used for filling wires and cables that are required to function fully or partially under electrical stress. Filling compound furnished shall inhibit the corrosion of any metallic wire and cable elements with which it comes in contact, while serving as a radial and longitudinal barrier to moisture transmission. Contact of the filling compound with any cable component shall not cause degradation of performance of the cable component. The filling compound shall display adhesive properties to provide adhesion between metallic sheath elements and the outer jacket materials of wire and cable. The following properties of filling compounds manufactured shall be determined: homogeneity, color and opacity, color stability, foreign materials, and other properties that includes volatility, thermal oxidative stability, and corrosion prevention.1.1 This specification covers a variety of petroleum-based and other compounds used for filling the air spaces in telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating through the cable structure. (For related standards see Specifications D4730 and D4732).1.2 A hot-application compound is a material that requires melting in order to be applied as a liquid and its melting point affects its performance in the finished cable product.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers two types of cool-application compounds used for filling the air spaces in telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating through the cable structure. Type I are general-purpose filling compounds including all materials to be used for filling cables that are not required to function under electrical stress (for example, all-dielectric fiber-optic cable), including filling compounds for fiber-optic loose buffer tubes. While, Type II are electrical-type filling compounds including materials having prescribed electrical properties and used for filling wires and cables that are required to function fully or partially under electrical stress (including hybrid fiber-optic cable). Though chemical composition is not specified, the filling compounds shall, however, be tested and conform accordingly to the following electrical, physical, and temperature characteristics, as agreed upon between producer and purchaser: dissipation factor; volume resistivity; corrosion inhibition; adhesion; flash point; high-temperature drip/oil separation (syneresis) in the raw material state; evaporation loss; water resistance; homogeneity; color and opacity; color stability; foreign materials; volatility; thermal oxidative stability; cone penetration; pour point; drop-melting point; viscosity; congealing point; drop point; cable drip-out temperature; and cold-bend low-temperature flexibility.1.1 This specification covers a variety of compounds used for filling the air spaces in telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating through the cable structure. (For related standards see Specifications D4730 and D4731.)1.2 A cool-application compound is a material that has sufficiently low viscosity that it does not require heating.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

Environmental performance test values for smooth-wall, coilable, medium density and high density polyethylene (MDPE and HDPE) conduit (duct) for preassembled wire and cable may provide data for research and development, engineering design, quality control, and acceptance or rejection under specifications. 1.1 These test methods cover procedures for determining the environmental performance properties of smooth-wall, coilable, medium-density and high-density polyethylene (MDPE and HDPE) conduit (duct) for preassembled wire and cable. 1.2 Whenever two sets of values are presented, in different units, the values in the first set are the standard, while those in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method provides a means to measure a variety of fire-test-response characteristics associated with heat and smoke release and resulting from burning the materials insulating electrical or optical fiber cables, when made into cables and installed on a vertical cable tray. The specimens are allowed to burn freely under well ventilated conditions after ignition by means of a propane gas burner. The ignition source used in this test method is also described as a premixed flame flaming ignition source in Practice E3020, which contains an exhaustive compilation of ignition sources.5.2 The rate of heat release often serves as an indication of the intensity of the fire generated. General considerations of the importance of heat release rate are discussed in Appendix X1 and considerations for heat release calculations are in Appendix X2.5.3 Other fire-test-response characteristics that are measurable by this test method are useful to make decisions on fire safety. The test method is also used for measuring smoke obscuration. The apparatus described here is also useful to measure gaseous components of smoke; the most important gaseous components of smoke are the carbon oxides, present in all fires. The carbon oxides are major indicators of the completeness of combustion and are often used as part of fire hazard assessment calculations and to improve the accuracy of heat release measurements.5.4 Test Limitations: 5.4.1 The fire-test-response characteristics measured in this test are a representation of the manner in which the specimens tested behave under certain specific conditions. Do not assume they are representative of a generic fire performance of the materials tested when made into cables of the construction under consideration.5.4.2 In particular, it is unlikely that this test is an adequate representation of the fire behavior of cables in confined spaces, without abundant circulation of air.5.4.3 This is an intermediate-scale test, and the predictability of its results to large scale fires has not been determined. Some information exists to suggest validation with regard to some large-scale scenarios.1.1 This is a fire-test-response standard.1.2 This test method provides a means to measure the heat released and smoke obscuration by burning the electrical insulating materials contained in electrical or optical fiber cables when the cable specimens, excluding accessories, are subjected to a specified flaming ignition source and burn freely under well ventilated conditions. Flame propagation cable damage, by char length, and mass loss are also measured.1.3 This test method provides two different protocols for exposing the materials, when made into cable specimens, to an ignition source (approximately 20 kW), for a 20 min test duration. Use it to determine the heat release, smoke release, flame propagation and mass loss characteristics of the materials contained in single and multiconductor electrical or optical fiber cables.1.4 This test method does not provide information on the fire performance of materials insulating electrical or optical fiber cables in fire conditions other than the ones specifically used in this test method nor does it measure the contribution of the materials in those cables to a developing fire condition.1.5 Data describing the burning behavior from ignition to the end of the test are obtained.1.6 This test equipment is suitable for measuring the concentrations of certain toxic gas species in the combustion gases (see Appendix X4).1.7 The values stated in SI units are to be regarded as standard (see IEEE/ASTM SI-10). The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.8 This standard measures and describes the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products or assemblies under actual fire conditions1.9 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This practice is intended to assist engineers and sewer owner/operators in determining the suitability of sewers for a secondary use as hosts for optical fiber cables and conduits. It must be kept in mind that the primary use of the sewers is to carry wastewater or storm water, or both. Any secondary use of the system shall not significantly impair the primary use. It is up to the engineer to decide upon any exceptions that may be involved in the selection process.5.2 Before the selection procedure begins, the installer must have explicit authorization from the owner/operator allowing an evaluation to be conducted for the installation of optical fiber cables or conduits within their sewer system.5.3 Engineers and owners should also be cognizant of how the installation of optical fiber cable or conduits will impact the future operational, maintenance, and rehabilitation needs of the sewers.1.1 This practice specifically addresses the criteria for determining the suitability of gravity sewers for secondary uses such as the installation of optical fiber systems.1.1.1 This practice applies to the process of selecting gravity sewers that are appropriate for accepting an optical fiber system as opposed to standards for the installation, operation and maintenance of such system within sewers.1.2 This practice applies to both man accessible and man inaccessible sewer systems.1.3 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers thermoplastic polymer insulation consisting substantially of polyethylene considered suitable for use on electrical wire or cable with specified maximum conductor sizes that will be used for continuous operation at specified conductor temperatures and maximum voltage ratings for power application or series lighting. Since the insulation material cannot be tested unless it has been formed around a conductor, tests shall then be done on insulated wire or cable in this specification are solely to determine the relevant property of the insulation material and not to test the insulated conductor or completed cable. Materials shall conform to physical properties as to unaged tensile strength and elongation at rupture, tensile strength and elongation at rupture after air oven aging, absorption coefficient, and insulation thickness. Insulations shall also be tested for their electrical performance in terms of AC and DC voltage, partial discharge, and insulation resistance.1.1 This specification covers a thermoplastic insulation which consists substantially of polyethylene.1.2 This type of insulation is considered suitable for use on wire or cable that will be used for continuous operation at conductor temperatures up to 75 °C with a maximum conductor size of 1000 kcmil (507 mm2). The maximum voltage rating shall not exceed 35 000 V for power application or 9 000 V for series lighting.1.3 In many instances the insulation material cannot be tested unless it has been formed around a conductor. Therefore, tests done on insulated wire or cable in this specification are solely to determine the relevant property of the insulation material and not to test the insulated conductor or completed cable.1.4 Whenever two sets of values are stated, in different units, the values in the first set are regarded as standard, while the values in parentheses are provided for information only and are not considered standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers an ozone-resisting crosslinked rubber insulation compound for electrical wires and cables. The polymer shall consist substantially of ethylene-alkene copolymer (EAM) or ethylene-alkene diene terpolymer (EADM). This polymer type includes ethylenepropylene copolymer (EPM) and ethylenepropylene diene terpolymer (EPDM). The crosslinked insulation shall conform to the requirements for physical properties specified. Tests shall be performed in accordance to the following test methods: AC voltage withstand test; insulation resistance; DC voltage withstand tests; capacitance and dissipation factor; partial discharge level test; accelerated water absorption; and ozone resistance.1.1 This specification covers an ozone-resisting crosslinked rubber insulation compound for electrical wires and cables. The polymer shall consist substantially of ethylene-alkene copolymer (EAM) or ethylene-alkene diene terpolymer (EADM). This polymer type includes ethylenepropylene copolymer (EPM) and ethylenepropylene diene terpolymer (EPDM).1.2 This type of insulation is considered suitable for use on wire or cable which will be used in wet and dry locations with conductor temperatures up to 90°C during continuous operation, to 130°C during emergency overload conditions, and to 250°C during short-circuit conditions. It is considered suitable for all sizes and voltage classifications of single- and multiple-conductor power cables up to 35 000 V phase-to-phase at the 100 % insulation level and up to 25 000 V at the 133 % insulation level as listed in Table 1D of Test Methods D470. Single-conductor cables shall have a supplementary covering over the insulation, and multiple-conductor cables shall have an overall covering.1.3 Whenever two sets of values are presented, in different units, the values in the first set are the standard, while those in parentheses are for information only.1.4 In many instances the insulation material cannot be tested unless it has been formed around a conductor or cable. Therefore, tests are done on insulated wire or cable in this specification solely to determine the relevant property of the insulation and not to test the conductor or completed cable.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers thermoplastic chlorinated polyethylene (CM) compounds suitable for use as an outer covering or jacket on electrical cables. Thermoplastic jackets shall conform to the requirements for physical properties specified. The sunlight and weather resistance of the jackets shall be tested to meet the requirements specified.1.1 This specification covers thermoplastic chlorinated polyethylene (CPE) compounds suitable for use as an outer covering or jacket on electrical cables.1.2 These jacket materials are suitable for use on cables which will be installed at temperatures above –35 °C.1.3 The values stated in inch-pound units are regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification establishes the requirements for compacted, mineral-insulated, metal-sheathed (MIMS) cables used to manufacture metal-sheathed, industrial resistance thermometers known as Resistance Temperature Detectors (RTDs). It covers the material requirements, significance and use, ordering information and basis for purchase, processing requirements, quality verification and test requirements, certification and reports, packaging, marking, and shipping.1.1 This specification covers the requirements for compacted, mineral-insulated, metal-sheathed (MIMS) cables used to manufacture metal-sheathed, industrial resistance thermometers referred to in this document as Resistance Temperature Detectors or RTDs.1.2 The materials of construction include copper, nickel-clad copper, copper-45 % nickel (constantan), or nickel conductors, an austenitic stainless steel or nickel-chromium alloy sheath, and either magnesia (MgO) or alumina (Al2O3) insulation.1.3 The cable diameter is between 0.093 and 0.500 in. (2.33 and 12.70 mm) and contains between two and eight conductors, set in various design configurations and wire spacings.1.4 The values of temperature in this specification are based on the International Temperature Scale of 1990 (ITS-90).1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides a means to measure a variety of fire-test-response characteristics associated with smoke obscuration and resulting from burning the electrical insulating materials contained in electrical or optical fiber cables. The specimens are allowed to burn freely under well ventilated conditions after ignition by means of a propane gas burner.5.2 Smoke obscuration quantifies the visibility in fires.5.3 This test method is also suitable for measuring the rate of heat release as an optional measurement. The rate of heat release often serves as an indication of the intensity of the fire generated. Test Method D5537 provides means for measuring heat release with the equipment used in this test method.5.4 Other optional fire-test-response characteristics that are measurable by this test method are useful to make decisions on fire safety. The most important gaseous components of smoke are the carbon oxides, present in all fires. They are major indicators of the toxicity of the atmosphere and of the completeness of combustion, and are often used as part of fire hazard assessment calculations and to improve the accuracy of heat release measurements. Other toxic gases, which are specific to certain materials, are less crucial for determining combustion completeness.5.5 Test Limitations: 5.5.1 The fire-test-response characteristics measured in this test method are a representation of the manner in which the specimens tested behave under certain specific conditions. Do not assume they are representative of a generic fire performance of the materials tested when made into cables of the construction under consideration.5.5.2 In particular, it is unlikely that this test method is an adequate representation of the fire behavior of cables in confined spaces, without abundant circulation of air.5.5.3 This is an intermediate-scale test, and the predictability of its results to large scale fires has not been determined. Some information exists to suggest that it has been validated against some large-scale scenarios.1.1 This is a fire-test-response standard.1.2 This test method provides a means to measure the smoke obscuration resulting from burning electrical insulating materials contained in electrical or optical fiber cables when the cable specimens, excluding accessories, are subjected to a specified flaming ignition source and burn freely under well ventilated conditions.1.3 This test method provides two different protocols for exposing the materials, when made into cable specimens, to an ignition source (approximately 20 kW), for a 20 min test duration. Use it to determine the flame propagation and smoke release characteristics of the materials contained in single and multiconductor electrical or optical fiber cables designed for use in cable trays.1.4 This test method does not provide information on the fire performance of electrical or optical fiber cables in fire conditions other than the ones specifically used in this test method, nor does it measure the contribution of the cables to a developing fire condition.1.5 Data describing the burning behavior from ignition to the end of the test are obtained.1.6 The production of light obscuring smoke is measured.1.7 The burning behavior is documented visually, by photographic or video recordings, or both.1.8 The test equipment is suitable for making other, optional, measurements, including the rate of heat release of the burning specimen, by an oxygen consumption technique and weight loss.1.9 Another set of optional measurements are the concentrations of certain toxic gas species in the combustion gases.1.10 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. (See IEEE/ASTM SI 10.)1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.13 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.14 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏
52 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页