微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The viscous and elastic behavior of unvulcanized rubbers and rubber compounds is of paramount importance in rubber manufacturing, since it affects processing, such as mixing, calendering, extrusion, and molding. The uniformity of these properties is equally important, as fluctuations will cause upsets in manufacturing processes.5.2 A test capable of measuring viscosity and elasticity of unvulcanized rubbers and rubber compounds, including their uniformity and prediction of processing behavior, is therefore highly desirable (see Practice D6048 for further information).5.3 Compared to many other rheological tests, this test method measures viscosity and elasticity related parameters under conditions of low shear and has a high discriminating power. It can detect small rheological differences. A full discussion of the principles behind stress relaxation testing is given in Practice D6048.5.4 Test results of this test method may be useful in predicting processability, but correlation with actual manufacturing processes must be established in each individual case, since conditions vary too widely.5.5 This test method is suitable for specification compliance testing, quality control, referee purposes, and research and development work.1.1 This test method is an adaptation of the German Standard DIN 53514, a further development of the former “Defo Test” (see Appendix X1).1.2 This test method is capable of measuring and characterizing the rheological behavior (viscosity and elasticity) of unvulcanized raw rubbers and rubber compounds, relating to the macro structure of rubber polymers (average molecular weight, molecular weight distribution, long chain branching, and micro- and macro-gel).1.3 The viscosity and elasticity of unvulcanized rubbers and rubber compounds are determined by subjecting cylindrical test pieces to a compression/recovery cycle. The dependency on shear rate at constant shear stress is evaluated and the material fatigue behavior is determined in repeat cycle testing.1.4 The non-Newtonian viscous and elastic behavior of rubbers and rubber compounds can also be evaluated.1.5 Statistical evaluation of the test data provides an indication of data variation, which may be employed as an estimate of the homogeneity of the material tested.1.6 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice determines the procedure to be used to ensure the long-term storage stability of aircraft cleaning and maintenance products in order to ensure their ability to meet the shelf-life requirements called up in specifications or contract documents. The subsequent testing requirements are detailed in the specification or contract.1.1 This practice covers the determination of the stability in storage of liquid enzyme-based, terpene-based, and solvent-based chemical cleaning compounds used to clean the exterior surfaces of aircraft.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Fluids and greases in contact with encapsulating compounds have the potential to adversely modify the encapsulant properties with resulting damage or loss of protection to components in electronic applications.5.2 This test method provides a means for measuring the effect of fluids and greases on various encapsulants.5.3 This test method is intended for use in research and evaluation.1.1 This test method determines the resistance of encapsulating compounds to fluids or greases by measuring changes in weight (Note 1) and volume under defined conditions of time and temperature.Note 1—To provide consistency with the usage in other ASTM test methods concerned with determining the properties of plastic materials, the terms “weight” and “weigh” are used in this test method although the units of measurement are those of mass.1.2 The values stated in SI units are standard. The values in parentheses are for information only.Note 2—There is no similar or equivalent IEC standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See 9.1.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers a variety of petroleum-based and other compounds used for filling the air spaces in telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating through the cable structure. The two basic types of filling compounds are specified: Type I which are general-purpose filling compounds that include all materials to be used for filling cables that are not required to function under electrical stress and Type II which are electrical-type filling compounds that include materials having prescribed electrical properties and used for filling wires and cables that are required to function fully or partially under electrical stress. Filling compound furnished shall inhibit the corrosion of any metallic wire and cable elements with which it comes in contact, while serving as a radial and longitudinal barrier to moisture transmission. Contact of the filling compound with any cable component shall not cause degradation of performance of the cable component. The filling compound shall display adhesive properties to provide adhesion between metallic sheath elements and the outer jacket materials of wire and cable. The following properties of filling compounds manufactured shall be determined: homogeneity, color and opacity, color stability, foreign materials, and other properties that includes volatility, thermal oxidative stability, and corrosion prevention.1.1 This specification covers a variety of petroleum-based and other compounds used for filling the air spaces in telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating through the cable structure. (For related standards see Specifications D4730 and D4732).1.2 A hot-application compound is a material that requires melting in order to be applied as a liquid and its melting point affects its performance in the finished cable product.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

The melting point is useful in selecting a filling or treating compound that will not flow at the operating temperature of the device in which it will be used. It is also essential that it shall not be so high as to injure the insulation at the time of pouring. This test method is suitable for specification, classification, and for control of product uniformity. 1.1 These test methods cover physical and electrical tests for solid filling and treating compounds used for electrical insulation which are fusible to a liquid without significant chemical reaction. Compounds that are converted to the solid state by polymerization, condensation, or other chemical reaction are not included in these test methods. 1.2 These test methods are designed primarily for asphaltic or bituminous compounds, waxes, and fusible resins, or mixtures thereof, although some of these methods are applicable to semisolid types such as petrolatums. Special methods more suitable for hydrocarbon waxes are contained in Test Methods D1168. 1.3 Provide adequate ventilation when these tests involve heating. 1.4 The test methods appear in the following sections: Test MethodSections Electrical Tests: A-C Loss Characteristics and Permittivity (Dielectric Constant)51-54 Dielectric Strength42-45 Volume Resistivity-Temperature Characteristics46-49 Physical Tests: Coefficient of Expansion or Contraction22-41 Flash and Fire Points 9 and 10 Loss on Heating11 and 12 Melting Point5 and 6 Penetration15 and 16 Softening Point7 and 8 Specific Gravity17-21 Viscosity13 and 14 1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see 12.1 and 31.5. Note 1—There is no similar or equivalent IEC or ISO standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers two types of cool-application compounds used for filling the air spaces in telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating through the cable structure. Type I are general-purpose filling compounds including all materials to be used for filling cables that are not required to function under electrical stress (for example, all-dielectric fiber-optic cable), including filling compounds for fiber-optic loose buffer tubes. While, Type II are electrical-type filling compounds including materials having prescribed electrical properties and used for filling wires and cables that are required to function fully or partially under electrical stress (including hybrid fiber-optic cable). Though chemical composition is not specified, the filling compounds shall, however, be tested and conform accordingly to the following electrical, physical, and temperature characteristics, as agreed upon between producer and purchaser: dissipation factor; volume resistivity; corrosion inhibition; adhesion; flash point; high-temperature drip/oil separation (syneresis) in the raw material state; evaporation loss; water resistance; homogeneity; color and opacity; color stability; foreign materials; volatility; thermal oxidative stability; cone penetration; pour point; drop-melting point; viscosity; congealing point; drop point; cable drip-out temperature; and cold-bend low-temperature flexibility.1.1 This specification covers a variety of compounds used for filling the air spaces in telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating through the cable structure. (For related standards see Specifications D4730 and D4731.)1.2 A cool-application compound is a material that has sufficiently low viscosity that it does not require heating.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D1783-01(2020) Standard Test Methods for Phenolic Compounds in Water Active 发布日期 :  1970-01-01 实施日期 : 

5.1 Phenolic compounds are sometimes found in surface waters from natural and industrial sources. Their presence in streams and other waterways frequently will cause off flavor in fish tissue and other aquatic food.5.2 Chlorination of waters containing phenols may produce chlorophenols that are odoriferous and objectionable tasting.1.1 These test methods cover the preparation of the sample and the determination of the concentration of phenolic compounds in water. They are based on the color reaction of phenol (C6H5OH) with 4-aminoantipyrine and any color produced by the reaction of other phenolic compounds is reported as phenol. The concentration of phenol measured represents the minimum concentration of phenolic compounds present in the sample.1.2 Phenolic compounds with a substituent in the para position may not quantitatively produce color with 4-aminoantipyrine. However, para substituents of phenol such as carboxyl, halogen, hydroxyl, methoxyl, or sulfonic acid groups do produce color with 4-aminoantipyrine.1.3 These test methods address specific applications as follows:  Range Sections     Test Method A—Chloroform Extraction 0 to 100 μg/L 11 to 17Test Method B—Direct Photometric >0.1 mg/L(100 μg/L) 18 to 241.4 It is the users’ responsibility to assure the validity of the standard test method for use in their particular matrix of interest.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see 6.3.2 and 8.6.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers rigid poly(vinyl chloride) (PVC) compounds and chlorinated poly(vinyl chloride) (CPVC) compounds for use in extruded or molded form like pipe and fitting applications. Classification requirements for identifying rigid PVC and CPVC shall be according to base resin, impact resistance under notch, tensile strength, modulus of elasticity in tension, deflection temperature under load, and flammability. PVC and CPVC shall be in the form of cubes, granules, free-flowing powder blends, or compacted powder blends, and shall be of uniform size and free of foreign matter. The material shall conform to the test requirements such as tensile strength and modulus of elasticity, conditioning, impact resistance, deflection temperature, and flammability.1.1 This classification system standard covers rigid PVC and CPVC compounds intended for general purpose use in extruded or molded form—including fittings and both pressure and nonpressure piping applications—composed of poly(vinyl chloride), chlorinated poly(vinyl chloride), or vinyl chloride copolymers containing at least 80 % vinyl chloride, and the necessary compounding ingredients. The compounding ingredients shall be permitted to consist of lubricants, stabilizers, non-poly(vinyl chloride) resin modifiers, pigments, and inorganic fillers.NOTE 1: Selection of specific compounds for particular end uses or applications requires consideration of other characteristics such as thermal properties, optical properties, weather resistance, etc. Specific requirements and test methods for these properties should be by mutual agreement between the purchaser and the seller.NOTE 2: Selection of compounds for pressure piping applications requires consideration of material stress ratings that are required for determining pressure ratings, but are not addressed in this specification. Requirements for long-term material stress ratings in accordance with recognized stress rating standards, such as HDB in accordance with Test Method D2837 for pressure piping, should be included in specifications for pressure piping products or systems.NOTE 3: The list of compounding ingredients in 1.1 is not meant to be an exhaustive list of allowable compound ingredients. In addition to the compounding ingredients listed, others may also be used. The list of compounding ingredients in 1.1 does not imply that every ingredient listed is a required ingredient. Some compounds may not contain all the ingredients listed in 1.1.1.2 For applications involving special chemical resistance see Classification D5260.1.3 The requirements in this classification system standard are intended for the quality control of compounds used to manufacture finished products. These properties are based on data obtained using standard test specimens tested under specified conditions. They are not directly applicable to finished products. See the applicable ASTM standards for requirements for finished products.1.4 The text of this classification system standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this specification.1.5 Some rigid PVC applications have the option to contain recycled PVC plastics that meet the requirements of this classification system standard. Refer to the specific requirements in the materials and manufacture section of the applicable product standard.1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.7 The following safety hazards caveat pertains only to the test methods portion, Section 11, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 4: This specification is similar in content (but not technically equivalent) to ISO 1163-1:1985 and ISO 1163-2:1980.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 A knowledge of spark-ignition engine fuel composition is useful for regulatory compliance, process control, and quality assurance.5.2 The quantitative determination of olefins and other hydrocarbon types in spark-ignition engine fuels is required to comply with government regulations.5.3 This test method is not applicable to M85 fuels, which contain 85 % methanol.1.1 This test method covers the quantitative determination of saturates, olefins, aromatics, and oxygenates in spark-ignition engine fuels by multidimensional gas chromatography. Each hydrocarbon type can be reported either by carbon number (see Note 1) or as a total.NOTE 1: There can be an overlap between the C9 and C10 aromatics; however, the total is accurate. Isopropyl benzene is resolved from the C8 aromatics and is included with the other C9 aromatics.1.2 This test method is not intended to determine individual hydrocarbon components except benzene and toluene.1.3 This test method is divided into two parts, Part A and Part B.1.3.1 Part A is applicable to the concentration ranges for which precision (Table 10 and Table 11) has been obtained:Property Units Applicable rangeTotal aromatics Volume % 19.32 to 46.29Total saturates Volume % 26.85 to 79.31Total olefins Volume % 0.40 to 26.85Oxygenates Volume % 0.61 to 9.85Oxygen Content Mass % 2.01 to 12.32Benzene Volume % 0.38 to 1.98Toluene Volume % 5.85 to 31.65Methanol Volume % 1.05 to 16.96Ethanol Volume % 0.50 to 17.86MTBE Volume % 0.99 to 15.70ETBE Volume % 0.99 to 15.49TAME Volume % 0.99 to 5.92TAEE Volume % 0.98 to 15.591.3.1.1 This test method is specifically developed for the analysis of automotive motor gasoline that contains oxygenates, but it also applies to other hydrocarbon streams having similar boiling ranges, such as naphthas and reformates.1.3.2 Part B describes the procedure for the analysis of oxygenated groups (ethanol, methanol, ethers, C3 to C5 alcohols) in ethanol fuels containing an ethanol volume fraction between 50 % and 85 % (17 % to 29 % oxygen). The gasoline is diluted with an oxygenate-free component to lower the ethanol content to a value below 20 % before the analysis by GC. The diluting solvent should not be considered in the integration, this makes it possible to report the results of the undiluted sample after normalization to 100 %.1.4 Oxygenates as specified in Test Method D4815 have been verified not to interfere with hydrocarbons. Within the round robin sample set, the following oxygenates have been tested: MTBE, ethanol, ETBE, TAME, iso-propanol, isobutanol, tert-butanol and methanol. Applicability of this test method has also been verified for the determination of n-propanol, acetone, and di-isopropyl ether (DIPE). However, no precision data have been determined for these compounds.1.4.1 Other oxygenates can be determined and quantified using Test Method D4815 or D5599.1.5 The method is harmonized with ISO 22854.1.6 This test method includes a relative bias section for U.S. EPA spark-ignition engine fuel regulations for total olefins reporting based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D1319 as a possible Test Method D6839 alternative to Test Method D1319. The Practice D6708 derived correlation equation is only applicable for fuels in the total olefins concentration range from 0.2 % to 18.2 % by volume as measured by Test Method D6839. The applicable Test Method D1319 range for total olefins is from 0.6 % to 20.6 % by volume as reported by Test Method D1319.1.7 This test method includes a relative bias section for reporting benzene based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D3606 (Procedure B) as a possible Test Method D6839 alternative to Test Method D3606 (Procedure B). The Practice D6708 derived correlation equation is only applicable for fuels in the benzene concentration range from 0.52 % to 1.67 % by volume as measured by Test Method D6839.1.8 This test method includes a relative bias section for reporting benzene based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D5580 as a possible Test Method D6839 alternative to Test Method D5580. The Practice D6708 derived correlation equation is only applicable for fuels in the benzene concentration range from 0.52 % to 1.67 % by volume as measured by Test Method D6839.1.9 This test method includes a relative bias section for reporting benzene based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D5769 as a possible Test Method D6839 alternative to Test Method D5769. The Practice D6708 derived correlation equation is only applicable for fuels in the benzene concentration range from 0.52 % to 1.67 % by volume as measured by Test Method D6839.1.10 This test method includes a relative bias section for reporting total aromatics based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D1319 as a possible Test Method D6839 alternative to Test Method D1319. The Practice D6708 derived correlation equation is only applicable for fuels in the total aromatics concentration range from 14.3 % to 31.2 % by volume as measured by Test Method D6839.1.11 This test method includes a relative bias section for reporting total aromatics based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D5580 as a possible Test Method D6839 alternative to Test Method D5580. The Practice D6708 derived correlation equation is only applicable for fuels in the total aromatics concentration range from 14.3 % to 31.2 % by volume as measured by Test Method D6839.1.12 This test method includes a relative bias section for reporting total aromatics based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D5769 as a possible Test Method D6839 alternative to Test Method D5769. The Practice D6708 derived correlation equation is only applicable for fuels in the total aromatics concentration range from 14.3 % to 30.1 % by volume as measured by Test Method D6839.1.13 This test method includes a relative bias section for reporting total olefins based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D6550 as a possible Test Method D6839 alternative to Test Method D6550. The Practice D6708 derived correlation equation is only applicable for fuels in the total olefins concentration range from 1.5 % to 17.2 % by volume as measured by Test Method D6839.1.14 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.15 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.16 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers plastic compounds composed of poly(vinyl chloride), chlorinated poly(vinyl chloride), or vinyl chloride copolymers, and the necessary compounding ingredients intended for use in making pipe, fittings, and other piping appurtenances. The compounding ingredients may consist of lubricants, stabilizers, non-poly(vinyl chloride) resin modifiers, pigments, and inorganic fillers. Means for classifying and identifying PVC and CPVC pipe and fittings compounds are provided. The tensile strength, modulus of elasticity, deflection temperature, hydrostatic design basis, and impact resistance shall be tested to meet the requirements specified.1.1 This specification covers plastic compounds composed of poly(vinyl chloride), chlorinated poly(vinyl chloride), or vinyl chloride copolymers, and the necessary compounding ingredients intended for use in making pipe, fittings, and other piping appurtenances. The compounding ingredients may consist of lubricants, stabilizers, non-poly(vinyl chloride) resin modifiers, pigments, and inorganic fillers.1.2 This specification is designed to cover compounds for pressure piping applications. Refer to Specification D 4396 for compounds designed for non-pressure applications.1.3 Rigid PVC-type compounds for building applications other than piping are covered in Specification D 4216.1.4 Rigid PVC-type compounds for general purpose extrusion and molding use are covered in Specification D 1784. Specification D 1784 is applicable to piping applications involving special chemical and acid resistance.1.5 The requirements in this specification are intended for the quality control of compounds used to manufacture pipe and fittings. They are not applicable to finished pipe and fittings. See the applicable ASTM standards for requirements for finished products.1.6 It may be necessary in special cases to select specific compounds for unusual piping applications that require consideration of other properties not covered in this specification, such as service temperature, sag resistance, chemical resistance, weather resistance, bending forces, etc.The following safety hazards caveat pertains only to the test methods section, Section 11, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.Note 1There are no ISO standards covering the primary subject matter of this specification.<>1.7 The text of this specification references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this specification.1.8 Recycled plastics shall not be used in pipe and fittings for pressure applications.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method provides a guide as to the amount of volatile matter that will be emitted from a channel glazing compound when tested by this test method.1.1 This test method describes the determination of the volatility of oil- and resin-based, knife-grade, channel glazing compounds.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The subcommittee with jurisdiction is not aware of any similar ISO standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The effects of VOC sources on the indoor air quality in buildings have not been well established. One basic requirement that has emerged from indoor air quality studies is the need for well-characterized test data on the emission factors of VOCs from building materials. Standard test method and procedure are a requirement for the comparison of emission factor data from different products.4.2 This practice describes a procedure for using a small environmental test chamber to determine the emission factors of VOCs from wood-based panels over a specified period of time. A pre-screening analysis procedure is also provided to identify the VOCs emitted from the products, to determine the appropriate GC-MS or GC-FID analytical procedure, and to estimate required sampling volume for the subsequent environmental chamber testing.4.3 Test results obtained using this practice provide a basis for comparing the VOC emission characteristics of different wood-based panel products. The emission data can be used to inform manufacturers of the VOC emissions from their products. The data can also be used to identify building materials with reduced VOC emissions over the time interval of the test.4.4 While emission factors determined by using this practice can be used to compare different products, the concentrations measured in the chamber shall not be considered as the resultant concentrations in an actual indoor environment.1.1 The practice measures the volatile organic compounds (VOC), excluding formaldehyde, emitted from manufactured wood-based panels. A pre-screening analysis is used to identify the VOCs emitted from the panel. Emission factors (that is, emission rates per unit surface area) for the VOCs of interest are then determined by measuring the concentrations in a small environmental test chamber containing a specimen. The test chamber is ventilated at a constant air change rate under the standard environmental conditions. For formaldehyde determination, see Test Method D6007.1.2 This practice describes a test method that is specific to the measurement of VOC emissions from newly manufactured individual wood-based panels, such as particleboard, plywood, and oriented strand board (OSB), for the purpose of comparing the emission characteristics of different products under the standard test condition. For general guidance on conducting small environmental chamber tests, see Guide D5116.1.3 VOC concentrations in the environmental test chamber are determined by adsorption on an appropriate single adsorbent tube or multi-adsorbent tube, followed by thermal desorption and combined gas chromatograph/mass spectrometry (GC-MS) or gas chromatograph/flame ionization detection (GC-FID). The air sampling procedure and the analytical method recommended in this practice are generally valid for the identification and quantification of VOCs with saturation vapor pressure between 500 and 0.01 kPa at 25°C, depending on the selection of adsorbent(s).NOTE 1: VOCs being captured by an adsorbent tube depend on the adsorbent(s) and sampling procedure selected (see Practice D6196). The user should have a thorough understanding of the limitations of each adsorbent used. Although canisters can be used to sample VOCs, this standard is limited to sampling VOCs from the chamber air using adsorbent tubes.1.4 The emission factors determined using the above procedure describe the emission characteristics of the specimen under the standard test condition. These data can be used directly to compare the emission characteristics of different products and to estimate the emission rates up to one month after the production. They shall not be used to predict the emission rates over longer periods of time (that is, more than one month) or under different environmental conditions.1.5 Emission data from chamber tests can be used for predicting the impact of wood-based panels on the VOC concentrations in buildings by using an appropriate indoor air quality model, which is beyond the scope of this practice.1.6 The values stated in SI units shall be regarded as the standard (see IEEE/ASTM SI-10).1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specified hazard statements see Section 6.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D2180-17 Standard Test Method for Active Oxygen in Bleaching Compounds Active 发布日期 :  1970-01-01 实施日期 : 

This test method covers the determination of inorganic active oxygen in bleaching compounds such as perborates, percarbonates, and peroxides by titration of an acidified aqueous solution with a standard solution of potassium permanganate. Tests shall use reagent grade chemicals, reagent water, potassium permanganate standard solution, sodium oxalate, and sulfuric acid. Well mixed sample shall be titrated according to the procedure indicated in this standard method. Active oxygen weight percent shall be calculated using the given formula.1.1 This test method covers the determination of inorganic“ active oxygen” in bleaching compounds such as perborates, percarbonates, and peroxides but not in persulfates or monopersulfates.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Safety Data Sheets (formerly known as Material Safety Data Sheets) are available for reagents and materials. Review them for hazards prior to usage.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method (Part A) utilizes FTIR spectroscopy to determine the percent Refrigerant-114 impurity in uranium hexafluoride. Refrigerant-114 is an example of an impurity gas in uranium hexafluoride.1.1 This test method covers determining the concentrations of refrigerant-114, some other carbon-containing and fluorine-containing compounds, hydrocarbons, and partially or completely substituted halohydrocarbons that may be impurities in uranium hexafluoride when looked for specifically. The two options are outlined for this test method. They are designated as Part A and Part B.1.1.1 To provide instructions for performing Fourier-Transform Infrared (FTIR) spectroscopic analysis for the possible presence of Refrigerant-114 impurity in a gaseous sample of uranium hexafluoride, collected in a “2S” container or equivalent at room temperature. The all gas procedure applies to the analysis of possible Refrigerant-114 impurity in uranium hexafluoride, and to the gas manifold system used for FTIR applications. The pressure and temperatures must be controlled to maintain a gaseous sample. The concentration units are in mole percent. This is Part A.1.2 The method discribed in part B is more efficient because there isn’t matrix effect. FTIR spectroscopy identifies bonds as C-H, C-F, C-Cl. To quantify HCH compounds, these compounds must be known and the standards available to do the calibration.After a screening, if the spectrum is the UF6 spectrum or if the other absorption peaks allow the HCH quantification, this test method can be used to check the compliance of UF6 as specified in Specifications C787 and C996. The limits of detection are in units of mole percent concentration.1.3 Part A pertains to Sections 7-10and Part B pertains to Sections 12-16.1.4 These test options are applicable to the determination of hydrocarbons, chlorocarbons, and partially or completely substituted halohydrocarbons contained as impurities in uranium hexafluoride (UF6). Gases such as carbon tetrafluoride (CF4), which absorb infrared radiation in a region where uranium hexafluoride also absorbs infrared radiation, cannot be analyzed in low concentration via these methods due to spectral overlap/interference.1.5 These test options are quantitative and applicable in the concentration ranges from 0.003 to 0.100 mole percent, depending on the analyte.1.6 These test methods can also be used for the determination of non-metallic fluorides such as silicon tetrafluoride (SiF4), phosphorus pentafluoride (PF5), boron trifluoride (BF3), and hydrofluoric acid (HF), plus metal-containing fluorides such as molybdenum hexafluoride (MoF6). The availability of high quality standards for these gases is necessary for quantitative analysis.1.7 These methods can be extended to other carbon-containing and inorganic gases as long as:1.7.1 There are not any spectral interferences from uranium hexafluoride’s infrared absorbances.1.7.2 There shall be a known calibration or known “K” (value[s]) for these other gases.1.8 The values stated in SI units are to be regarded as the standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Purgeable organic compounds have been identified as contaminants in treated drinking water, wastewater, ground water, and Toxicity Characteristic Leaching Procedure (TCLP) leachate. These contaminants may be harmful to the environment and to people. Purge and trap sampling is a generally applicable procedure for concentrating these components prior to gas chromatographic analysis.1.1 This test method covers the identification and simultaneous measurement of purgeable volatile organic compounds. It has been validated for treated drinking water, wastewater, and ground water. This test method is not limited to these particular aqueous matrices; however, the applicability of this test method to other aqueous matrices must be demonstrated.1.2 This test method is applicable to a wide range of organic compounds that have sufficiently high volatility and low water solubility to be efficiently removed from water samples using purge and trap procedures. Table 1 lists the compounds that have been validated for this test method. This test method is not limited to the compounds listed in Table 1; however, the applicability of the test method to other compounds must be demonstrated.1.3 Analyte concentrations up to approximately 200 μg/L may be determined without dilution of the sample. Analytes that are inefficiently purged from water will not be detected when present at low concentrations, but they can be measured with acceptable accuracy and precision when present in sufficient amounts.1.4 Analytes that are not separated chromatographically, but that have different mass spectra and non-interfering quantitation ions, can be identified and measured in the same calibration mixture or water sample. Analytes that have very similar mass spectra cannot be individually identified and measured in the same calibration mixture or water sample unless they have different retention times. Coeluting compounds with very similar mass spectra, such as structural isomers, must be reported as an isomeric group or pair. Two of the three isomeric xylenes are examples of structural isomers that may not be resolved on the capillary column, and if not, must be reported as an isomeric pair.1.5 It is the responsibility of the user to ensure the validity of this test method for untested matrices.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏
136 条记录,每页 15 条,当前第 2 / 10 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页