微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This practice permits an analyst to compare the general performance of an instrument on any given day with the prior performance of an instrument. This practice is not necessarily meant for comparison of different instruments with each other even if the instruments are of the same type and model. This practice is not meant for comparison of the performance of one instrument operated under differing conditions.1.1 This practice describes two levels of tests to measure the performance of laboratory Fourier transform mid-infrared (FT-MIR) spectrometers equipped with a standard sample holder used for transmission measurements.1.2 This practice is not directly applicable to Fourier transform infrared (FT-IR) spectrometers equipped with various specialized sampling accessories such as flow cells or reflectance optics, nor to Fourier transform near-infrared (FT-NIR) spectrometers, nor to FT-IR spectrometers run in step scan mode.1.2.1 If the specialized sampling accessory can be removed and replaced with a standard transmission sample holder, then this practice can be used. However, the user should recognize that the performance measured may not reflect that which is achieved when the specialized accessory is in use.1.2.2 If the specialized sampling accessory cannot be removed, then it may be possible to employ a modified version of this practice to measure spectrometer performance. The user is referred to Guide E1866 for a discussion of how these tests may be modified.1.2.3 Spectrometer performance tests for FT-NIR spectrometers are described in Practice E1944.1.2.4 Performance tests for dispersive MIR instruments are described in Practice E932.1.2.5 For FT-IR spectrometers run in a step scan mode, variations on this practice and information provided by the instrument vendor should be used.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exception—Informational inch-pound units are provided in 5.4.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Biodiesel is a fuel commodity primarily used as a blending component with diesel fuel. It is important to check the concentration of biodiesel in the diesel fuel in order to make sure it is either not below the minimum allowable limit and or does not exceed the maximum allowable limit.5.2 This test method is applicable for quality control in the production and distribution of diesel fuel and biodiesel blends.1.1 This test method determines fatty acid methyl esters (FAME or biodiesel) in diesel fuel oils. FAME can be quantitatively determined from 1.0 % to 30.0 % by volume. This test method uses linear variable filter (LVF) array based mid-infrared spectroscopy for monitoring FAME concentration.NOTE 1: See Section 6 for a list of interferences that could affect the results produced from this method.1.2 This test method uses a horizontal attenuated total reflectance (HATR) crystal and a univariate calibration.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 There are three types of olefinic groups present in sufficient concentrations to warrant consideration, one or more of that can normally be found in any polyethylene. The three types are trans-vinylene, R-CH=CH-R′, sometimes referred to as trans-internal unsaturation; vinylidene or pendent methylene, RR′C-CH2; and vinyl unsaturation, R-CH=CH2, also referred to as terminal unsaturation.5.2 The type and quantity of these groups can influence the chemical and physical properties of the resin. Information concerning their presence can also be used to characterize or identify unknown resins or blends of resins.5.3 Additives can interfere with unsaturation measurements. The use is cautioned to determine which additives are present and if there any absorbance bands caused by additive presence that overlap or interfere with unsaturation absorbance bands used in this test method in the range of 1050 to 850 cm–1. If overlapping bands occur, the method is not applicable.5.4 Interference fringes resulting from smooth sample surfaces can cause measurement errors. This test method requires the use of aluminum foil in the compression molding of samples to provide an adequately rough surface to minimize interference fringes.1.1 This test method covers most types of polyethylene, those ethylene plastics consisting of ethylene and α-olefin comonomers longer than propylene, and blends of the above in any ratio.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 8.NOTE 1: There is no known ISO equivalent for this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Trace amounts of water may be detrimental to the use of chlorine in some applications. The amount of water in the chlorine must be known to prevent problems during its use.1.1 This test method covers the determination of the content of water in liquid chlorine in the concentration range of 0.5 to 15 mg/kg (ppm).1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 Review the current Safety Data Sheets (SDS) for detailed information concerning toxicity, first aid procedures, and safety precautions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Section 7 for specific hazards statements.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

PVC compounds are used in a wide variety of products and hence they are formulated to provide a wide range of physical properties. The physical properties required in a compound depend upon the product in which it is used. These properties are largely determined by the type, quantity, and quality of the compounding ingredients. The analytical test method described below makes use of infrared spectrophotometry for the qualitative or quantitative determination, or both, of many of these ingredients in PVC compounds. This test method may be used for a variety of applications including process control, raw material acceptance, product evaluation, and determination of changes in composition resulting from environmental testing.This test method is directly applicable only to those components listed in the appendix and to those components which are known to be similar in chemical composition and in solubility characteristics to the chemicals listed in the appendix.1.1 This test method provides for the identification of certain resins, plasticizers, stabilizers, and fillers in poly(vinyl chloride) (PVC) compounds by an infrared spectrophotometric technique. In many cases, individual components may be measured quantitatively. Complementary procedures, such as chromatographic and other separations, will be necessary to separate specific components and extend the applications of this test method. Other instrumental test methods, such as optical emission or X-ray spectroscopic methods, may yield complementary information which may allow more complete or, in some cases, easier measurement of the components. The resin components covered in this test method are listed in the appendix.1.2 PVC formulations are too varied to be covered adequately by a single test method. Using the following test method, many compounds may be separated into resins, plasticizers, stabilizers, and fillers. A number of components can be quantitatively measured. Many more can be identified and their concentrations estimated. By the use of prepared standards, one may determine the usefulness and accuracy of the test method for specific PVC formulations. This test method is applicable for the resin components listed in the appendix and for other components having similar chemical compositions and solubility characteristics. This test method can lead to error in cases where the nature of the components is not known.1.3 The values stated in SI units are to be regarded as the standard. The values in brackets are given for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.Note 1—There is no known ISO equivalent to this standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 A speck will ultimately cause a failure to occur by virtue of its appearance in a film or by the decrease in electrical or mechanical properties in the polymer substrate (see Specification D1248).4.2 The analysis of composite layers for barrier purposes by microscopic Fourier transform infrared spectroscopy (FT-IR) can indicate the adequacy of the barrier tape or indicate why a barrier may be defective (a missing layer or hole in the layer or poor coextrusion practice). Fig. 1 represents a typical multilayer film.FIG. 1 Position and Function of Materials in a Typical Multilayer Film1.1 This practice describes the techniques used for detecting two different polymer entities such as:1.1.1 Abnormal specks or spots on a surface or in the film that are objectionable as defects and1.1.2 Layers of different polymeric sheets commonly used as barrier films made by coextrusion.1.2 This practice utilizes through-transmittance optical and infrared techniques.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7.NOTE 1: There is no known ISO equivalent to this standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Benzene is a compound that endangers health, and the concentration is limited by environmental protection agencies to produce a less toxic gasoline.5.2 This test method is fast, simple to run, and inexpensive.5.3 This test method is applicable for quality control in the production and distribution of spark-ignition engine fuels.1.1 This test method covers the determination of the percentage of benzene in spark-ignition engine fuels. It is applicable to concentrations from 0.1 % to 5 % by volume.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The infrared spectrum of an electrical insulating oil is a record of the absorption of infrared energy over a range of wavelengths. The spectrum indicates the general chemical composition of the test specimen.NOTE 2: The infrared spectrum of a pure chemical compound is probably the most characteristic property of that compound. However, in the case of oils, multicomponent systems are being examined whose spectra are the sum total of all the spectra of the individual components. Because the absorption bands of the components may overlap, the spectrum of the oil is not as sharply defined as that for a single compound. For these reasons, these practices may not in every case be suitable for the quantitative estimation of the components of such a complex mixture as mineral oil.1.1 These practices are to be used for the recording and interpretation of infrared absorption spectra of electrical insulating oils from 4000 cm−1 to 400 cm−1 (2.5 μm to 25 μm).NOTE 1: While these practices are specific to ratio recording or optical null double-beam dispersive spectrophotometers, single-beam and HATR (horizontal attenuated total reflectance), Fourier-transform rapid scan infrared spectrophotometers may also be used. By computerized subtraction techniques, ratio methods can be used. Any of these types of equipment may be suitable if they comply with the specifications described in Practice E932.1.2 Two practices are covered, a Reference Standard Practice and a Differential Practice.1.3 These practices are designed primarily for use as rapid continuity tests for identifying a shipment of oil from a supplier by comparing its spectrum with that obtained from previous shipments, or with the sample on which approval tests were made. They also may be used for the detection of certain types of contamination in oils, and for the identification of oils in storage or service, by comparison of the spectra of the unknown and known oils. The practices are not intended for the determination of the various constituents of an oil.1.4 Warning—Infrared absorption is a tool of high resolving power. Conclusions as to continuity of oil quality should not be drawn until sufficient data have been accumulated so that the shipment-to-shipment variation is clearly established, for example.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The presence and concentration of oil and grease in domestic and industrial wastewater is of concern to the public because of its deleterious aesthetic effect and its impact on aquatic life.5.2 Regulations and standards have been established that require monitoring of oil and grease in water and wastewater.1.1 This test method covers the determination of oil and grease and nonpolar material in water and wastewater by an infrared (IR) determination of dimer/trimer of chlorotrifluoroethylene (S-316)2 extractable substances from an acidified sample. Included in this estimation of oil and grease are any other compounds soluble in the solvent.1.2 This test method is applicable to measurement of the light fuel although loss of some light ends during extraction can be expected.1.3 This test method defines oil and grease in water and wastewater as that which is extractable in the test method and measured by IR absorption at 2930 cm-1 or 3.4 microns. Similarly, this test method defines nonpolar material in water and wastewater as that oil and grease which is not adsorbed by silica gel in the test method and measured by IR absorption at 2930 cm-1.1.4 This test method covers the range of 5 to 100 mg/L and may be extended to a lower or higher level by extraction of a larger or smaller sample volume collected separately.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine (Guide D3856) the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

The forest products finishing industry has encountered difficulties in measuring the temperature of painted surfaces prior to, during, and after the curing process. The use of thermocouples is not entirely satisfactory because the thermocouple wires tend to conduct heat away too rapidly from the area where the temperature is being measured. Infrared radiation thermometers that are simple to operate can circumvent this difficulty. After calibration they are aimed at the surface, switched on, and the temperature read directly from an indicating gage. Note 1—Temperature-sensitive crayons, papers, and pellets may be successfully used to measure only the highest temperature reached by painted surfaces during the curing cycle. There are several different types of infrared radiation thermometers, including those based on lead sulfide or thermistor sensors and those that are simple thermal voltaic transducers. As such they respond to different wavelengths of infrared radiation and have different areas of applicability. Only instruments that have been evaluated are included in this practice.1.1 This practice is intended to serve as a guide in measuring with infrared instruments the temperature during the curing process of coatings applied to wood products. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 There is a wide variety of nitration compounds that may be produced and accumulate when oils react with gaseous nitrates formed during the engine combustion process. These nitration products may increase the viscosity, acidity and insolubles in the oil, which may lead to ring sticking and filter plugging. Monitoring of nitration products is therefore an important parameter in determining overall machinery health and should be considered in conjunction with data from other tests such as atomic emission (AE) and atomic absorption (AA) spectroscopy for wear metal analysis (Test Method D5185), physical property tests (Test Methods D445 and D2896), and other FT-IR oil analysis methods for oxidation (Test Method D7414), sulfate by-products (Test Method D7415), and additive depletion (Test Method D7412), which also assess elements of the oil’s condition (1-6).1.1 This test method covers monitoring nitration in gasoline and natural gas engine oils as well as in other types of lubricants where nitration by-products may form due to the combustion process or other routes of formation of nitration compounds.1.2 This test method uses FT-IR spectroscopy for monitoring build-up of nitration by-products in in-service petroleum and hydrocarbon-based lubricants as a result of normal machinery operation. Nitration levels in gasoline and natural gas engine oils rise as combustion by-products react with the oil as a result of exhaust gas recirculation or a blow-by. This test method is designed as a fast, simple spectroscopic check for monitoring of nitration in in-service petroleum and hydrocarbon-based lubricants with the objective of helping diagnose the operational condition of the machine based on measuring the level of nitration in the oil.1.3 Acquisition of FT-IR spectral data for measuring nitration in in-service oil and lubricant samples is described in Practice D7418. In this test method, measurement and data interpretation parameters for nitration using both direct trend analysis and differential (spectral subtraction) trend analysis are presented.1.4 This test method is based on trending of spectral changes associated with nitration in in-service petroleum and hydrocarbon-based lubricants. For direct trend analysis, values are recorded directly from absorption spectra and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimetre). For differential trend analysis, values are recorded from the differential spectra (spectrum obtained by subtraction of the spectrum of the reference oil from that of the in-service oil) and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimetre). Warnings or alarm limits can be set on the basis of a fixed maximum value for a single measurement or, alternatively, can be based on a rate of change of the response measured (1).2 In either case, such maintenance action limits should be determined through statistical analysis, history of the same or similar equipment, round robin tests or other methods in conjunction with the correlation of nitration changes to equipment performance.NOTE 1: It is not the intent of this test method to establish or recommend normal, cautionary, warning or alert limits for any machinery. Such limits should be established in conjunction with advice and guidance from the machinery manufacturer and maintenance group.1.5 This test method is for petroleum and hydrocarbon-based lubricants and is not applicable for ester-based oils, including polyol esters or phosphate esters.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6.1 Exception—The unit for wave numbers is cm-1.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This guide presents the use of spectral searching by curve matching search algorithms for data recorded using mid-infrared spectroscopy. The methods described herein may be applicable to the use of these algorithms for other types of spectroscopic data, but each type of data search should be assessed separately. The purpose of this evaluation is the classification and, where possible, identification of the unknown. Spectral searching is intended as a screening method to assist the analyst, and is not an absolute identification technique, and hence, not intended to replace an expert in infrared spectroscopy and should not be used without suitable training. The Euclidean distance algorithm and the first derivative Euclidean distance algorithm are described and their use discussed. The theory and common assumptions made when using search algorithms are also discussed, along with guidelines for the use and interpretation of the search results.1.1 Spectral searching is the process whereby a spectrum of an unknown material is evaluated against a library (database) of digitally recorded reference spectra. The purpose of this evaluation is classification of the unknown and, where possible, identification of the unknown. Spectral searching is intended as a screening method to assist the analyst and is not an absolute identification technique. Spectral searching is not intended to replace an expert in infrared spectroscopy. Spectral searching should not be used without suitable training.1.2 The user of this guide should be aware that the results of a spectral search can be affected by the following factors described in Section 5: (1) baselines, (2) sample purity, (3) Absorbance linearity (Beer’s Law), (4) sample thickness, (5) sample technique and preparation, (6) physical state of the sample, (7) wavenumber range, (8) spectral resolution, and (9) choice of algorithm.1.2.1 Many other factors can affect spectral searching results.1.3 The scope of this guide is to provide a guide for the use of search algorithms for mid-infrared spectroscopy. The methods described herein may be applicable to the use of these algorithms for other types of spectroscopic data, but each type of data search should be assessed separately.1.4 The Euclidean distance algorithm and the first derivative Euclidean distance algorithm are described and their use discussed. The theory and common assumptions made when using search algorithms are also discussed, along with guidelines for the use and interpretation of the search results.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The results of this practice may be used to distinguish tar-based emulsion from an asphalt-based emulsion for specification compliance purposes.1.1 This practice uses infrared analytical techniques to qualitatively determine in the laboratory a ratio of aromatic absorbance to aliphatic absorbance. This practice may be used to determine if the bitumen in the emulsion is predominantly aromatic or aliphatic in nature.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Trace amounts of water may be detrimental to the use of chlorine in some applications. The amount of water in the chlorine must be known to prevent problems during its use.1.1 This test method is designed for the on-line determination of the content of water in liquid chlorine in the concentration range of 0.5 to 15 mg/kg (ppm).1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 Review the current Safety Data Sheets (SDS) for detailed information concerning toxicity, first aid procedures, and safety precautions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 7 and Note 3.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

AbstractThese practices cover a data system comprising procedures for the identification of individual chemical substances using infrared absorption spectroscopy and band indexes of spectral data. Although this data system is in use world wide as the largest publicly available data base, it does not represent the optimum way to generate a new data base with the most modern computerized equipment. In addition, the use of these practices requires encoded data and appropriate data handling equipment. The index data, which are available on magnetic tape, include codes for spectral data of chemical substances, chemical-structure classification, empirical formula, melting or boiling point, and serial number reference. Codes on sample state, wavelength intervals of strongest bands, and no-data areas are included as well.1.1 These practices cover a data system generated from 1955 through 1974. It is in world-wide use as the largest publicly available data base. It is recognized that it does not represent the optimum way to generate a new data base with the most modern computerized equipment.1.2 These practices describe procedures for identification of individual chemical substances using infrared absorption spectroscopy and band indexes of spectral data. Use of absorption spectroscopy for qualitative analysis has been described by many (), but the rapid matching of the spectrogram of a sample with a spectral data in the literature by use of a band index system designed for machine sorting was contributed by Kuentzel (). It is on Kuentzel's system that the ASTM indexes of absorption spectral data are based.1.3 Use of these practices requires, in addition to a recording spectrometer and access to published reference spectra, the encoded data and suitable data handling equipment.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
108 条记录,每页 15 条,当前第 2 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页