微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This practice is intended to measure air flow through materials used to fill joints found in building construction.5.2 This practice does not purport to establish all required criteria for the selection of an air barrier assembly. Therefore, the results should be used only for comparison purposes and should not be seen as the equivalent to field installed building systems.1.1 This practice is intended to determine the air leakage rate of aerosol foam sealants as measured in a standardized jig. This practice provides a procedure for preparing the test apparatus and further describes the application of aerosol foam sealant and other joint fillers to the apparatus prior to conducting Test Method E283.1.2 This practice allows testing laboratories to quantify the air leakage rate of aerosol foam sealants or joint filling products using Test Method E283 and reporting the data in L/(s · m2) according to Practice E29.1.3 This practice is used in conjunction with Test Method E283. Although Test Method E283 is a laboratory test method used with fenestration products, individuals interested in performing field air leakage tests on installed units should reference Test Method E783 and AAMA 502.1.4 Aerosol foam sealants are used for a variety of end use applications generally intended to reduce air leakage in the building envelope.1.5 Insulating type materials also will be found suitable for evaluation with this practice.1.6 There are no other known practices or test methods that specify the preparation of the assemblies used to determine the air leakage rate of gap filling sealants, dry preformed foams or insulations.1.7 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The expanded limits of the Adjunct for VCF are defined in a mixture of terms of customary and metric units. Table 1 shows the defining limits and their associated units in bold italics. Also shown in Table 1 are the limits converted to their equivalent units (and, in the case of the densities, other base temperatures).5.2 Note that only the precision levels of the defining values shown in Table 1 are correct. The other values showing converted units have been rounded to the significant digits shown; as rounded values, they may numerically fall just outside of the actual limits established by the defining values.5.3 Table 2 provides a cross-reference between the historical table designations and the corresponding section in the Adjunct for VCF. Note that procedure paragraphs 11.1.6.3 (U.S. customary units) and 11.1.7.3 (metric units) provide methods for correcting on-line density measurements from live conditions to base conditions and then to compute CTPL factors for continuous volume corrections to base conditions.5.4 When a glass hydrometer is used to measure the density of a liquid, special corrections must be made to account for the thermal expansion of the glass when the temperature is different from that at which the hydrometer was calibrated. The 1980 CTL Tables had generalized equations to correct glass hydrometer readings, and these corrections were part of the printed odd-numbered tables. However, detailed procedures to correct a glass hydrometer reading are beyond the scope of the Adjunct for VCF. The user should refer to the appropriate sections of API MPMS Chapter 9 or other appropriate density/hydrometer standards for guidance.5.5 The set of correlations given in the Adjunct for VCF is intended for use with petroleum fluids comprising either crude oils, refined products, or lubricating oils that are single-phase liquids under normal operating conditions. The liquid classifications listed here are typical terms used in the industry, but local nomenclature may vary. The list is illustrative and is not meant to be all-inclusive.5.6 Crude Oils—A crude oil is considered to conform to the commodity group Generalized Crude Oils if its density falls in the range between approximately –10°API to 100°API. Crude oils that have been stabilized for transportation or storage purposes and whose API gravities lie within that range are considered to be part of the Crude Oil group. Also, aviation Jet B (JP-4) is best represented by the Crude Oil correlation.5.7 Refined Products—A refined product is considered to conform to the commodity group of Generalized Refined Products if the fluid falls within one of the refined product groups. Note the product descriptors are generalizations. The commercial specification ranges of some products may place their densities partly within an adjacent class (for example, a low-density diesel may lie in the jet fuel class). In such cases, the product should be allocated to the class appropriate to its density, not its descriptor. The groups are defined as follows:5.7.1 Gasoline—Motor gasoline and unfinished gasoline blending stock with a base density range between approximately 50°API and 85°API. This group includes substances with the commercial identification of: premium gasoline, unleaded gasoline, motor spirit, clear gasoline, low-lead gas, motor gasoline, catalyst gas, alkylate, catalytic cracked gasoline, naphtha, reformulated gasoline, and aviation gasoline.5.7.2 Jet Fuels—Jet fuels, kerosene, and Stoddard solvents with a base density range between approximately 37°API and 50°API. This group includes substances with the commercial identification of: aviation kerosene K1 and K2, aviation Jet A and A-1, kerosene, Stoddard solvent, JP-5, and JP-8.5.7.3 Fuel Oils—Diesel oils, heating oils, and fuel oils with a base density range between approximately –10°API and 37°API. This group includes substances with the commercial identification of: No. 6 fuel oil, fuel oil PA, low-sulfur fuel oil, LT (low temperature) fuel oil, fuel oil, fuel oils LLS (light low sulfur), No. 2 furnace oil, furnace oil, auto diesel, gas oil, No. 2 burner fuel, diesel fuel, heating oil, and premium diesel.5.8 Lubricating Oils—A lubricating oil is considered to conform to the commodity group Generalized Lubricating Oils if it is a base stock derived from crude oil fractions by distillation or asphalt precipitation. For the purpose of the Adjunct for VCF, lubricating oils have initial boiling points greater than 700 °F (370 °C) and densities in the range between approximately –10°API to 45°API.5.9 Special Applications—Liquids that are assigned the special applications category are generally relatively pure products or homogeneous mixtures with stable (unchanging) chemical composition that are derived from petroleum (or are petroleum-based with minor proportions of other constituents) and have been tested to establish a specific thermal expansion factor for the particular fluid. These tables should be considered for use when:5.9.1 The generalized commodity groups' parameters are suspected of not adequately representing the thermal expansion properties of the liquid.5.9.2 A precise thermal expansion coefficient can be determined by experiment. A minimum of ten temperature/density data points is recommended to use this method. See 11.1.5.2 of the Adjunct for VCF for the procedure to calculate the thermal expansion coefficient from measured density data.5.9.3 Buyer and seller agree that, for their purpose, a greater degree of equity can be obtained using factors specifically measured for the liquid involved in the transaction.5.10 Refer to paragraphs 11.1.2.4 and 11.1.2.5 in the Adjunct for VCF for a complete description of the suitability of the implementation procedures for specific hydrocarbon liquids.1.1 This guide provides information related to the algorithm and implementation procedure but does not contain the full set of algorithms. The algorithms, instructions, procedures, and examples are located in the associated supplementary adjuncts. The Adjunct for Volume Correction Factors (VCF) for temperature and pressure volume correction factors for generalized crude oils, refined products, and lubricating oils provides the algorithm and implementation procedure for the correction of temperature and pressure effects on density and volume of liquid hydrocarbons. Natural gas liquids (NGLs) and liquefied petroleum gases (LPGs) are excluded from consideration in this standard but may be found in API MPMS Chapter 11.2.4/GPA 8217 Temperature Correction for NGL and LPG. As this Adjunct for VCF will be applied to a variety of applications, the output parameters of CTL, Fp, CPL, and CTPL may be used as specified in other standards.1.2 Including the pressure correction in the Adjunct for VCF represents an important change from the “temperature only” correction factors given in the 1980 Petroleum Measurement Tables. However, if the pressure is one atmosphere (the standard pressure), then there is no pressure correction and the standard/adjunct(s) will give CTL values consistent with the 1980 Petroleum Measurement Tables.1.3 The Adjunct for VCF covers general procedures for the conversion of input data to generate CTL, Fp, CPL, and CTPL values at the user-specified base temperature and pressure (Tb, Pb). Two sets of procedures are included for computing volume correction factor: one set for data expressed in customary units (temperature in °F, pressure in psig); the other for the metric system of units (temperature in °C, pressure in kPa or bar).NOTE 1: In contrast to the 1980 Petroleum Measurement Tables, the metric procedures require the procedure for customary units be used first to compute density at 60 °F. This value is then further corrected to give the metric output. The metric procedures now incorporate the base temperature of 20 °C in addition to 15 °C.1.4 The procedures in the Adjunct for VCF recognize three distinct commodity groups: crude oil, refined products, and lubricating oils. A procedure is also provided for determining volume correction for special applications where the generalized commodity groups’ parameters may not adequately represent the thermal expansion properties of the liquid and a precise thermal expansion coefficient has been determined by experiment. Procedures for determining Volume Correction Factors (VCF) for Denatured Ethanol can be found in API MPMS Chapter 11.3.3, Miscellaneous Hydrocarbon Properties—Denatured Ethanol Density and Volume Correction Factors, 3rd edition. Procedures for determining Volume Correction Factors (VCF) for Gasoline and Denatured Ethanol Blends can be found in API MPMS Chapter 11.3.4, Miscellaneous Hydrocarbon Properties—Denatured Ethanol and Gasoline Component Blend Densities and Volume Correction Factors, 1st edition.1.5 The values stated in either SI units or inch‐pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the material, manufacturing, and physical requirements for preformed silicone joint seals used in bridges. The seal consists of a silicone rubber gland preformed to a continuous length and is designed to prevent any tension from occurring in the seal or bonding point during normal movement. The seal is installed by bonding it to the joint header with a silicone-based adhesive, sealing the joint to prevent liquid intrusion. Physical requirements for the preformed silicone joint seal gland cover resistance to accelerated weathering, tensile strength, elongation at break, hardness, tear strength, compression set, and heat-aged properties, whereas physical requirements for the silicone-based adhesive cover tensile strength, elongation at break, sag/flow, tack-free time, resistance to UV, and cure through to 1/4-in. thickness.1.1 This specification covers the material requirements for preformed silicone joint seals for bridges. The seal consists of a silicone rubber gland preformed to a continuous length. Its design shall prevent any tension from occurring in the seal or bonding point during normal movement. The seal is installed by bonding it to the joint header with a silicone-based adhesive and is designed to seal the joint, preventing liquid intrusion.1.2 The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers preformed expansion joint fillers made from closed-cell polypropylene foam materials having suitable compressibility, recovery from compression, nonextruding, and weather-resistant characteristics.1.1.1 Type I, closed-cell polypropylene foam.1.2 These joint fillers are intended for use in concrete pavements in full-depth joints. There are several variations in size with typical thicknesses of 1/2 in. (12.7 mm), 3/4 in. (19.05 mm), and 1 in. (25.4 mm); typical widths of 31/2 in. (88.9 mm), 4 in. (101.6 mm), 5 in. (127 mm), 6 in. (152.5 mm), 7 in. (177.8 mm), 8 in. (203.2 mm), or 48 in. (1.2 m) sheet; and typical lengths of 5 ft (1.52 m) and 10 ft (3.05 m).1.3 The values stated in inch-pound units are to be regarded as the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the polyethylene material and dimensions applicable to flange adapters (FAs) used to connect polyethylene pipes to other flanged pipe and components such as valves and flanged fittings. It describes outside diameter controlled polyethylene (PE) pipe FAs which may be manufactured by various methods including injection molding, compression molding, and machining from thick-wall polyethylene pipe.1.1 This specification covers the polyethylene material and dimensions applicable to flange adapters (FAs) used to connect polyethylene pipes to other flanged pipe and components such as valves and flanged fittings. This standard describes outside diameter controlled polyethylene (PE) pipe flange adapters (FAs) in diameters ranging from 3/4 in. through 65 in. (12 mm through 1600 mm). The flange adapters may be manufactured by various methods including injection molding, compression molding, and machining from billet or thick-wall polyethylene pipe.1.2 The flange adapter (FA) is the principal component of the lap-joint flanged assembly widely used for several decades in low-pressure to high-pressure polyethylene pipe systems for all types of pressurized flow (gas and liquid) applications. The flange adapter’s physical shape consists of the pipe-like Neck which is monolithic with its Hub. The Neck is intended to be butt-fused or fusion coupled to the pipe-line; while the Hub face is intended to affect the seal when subjected to the distributed load from the back up ring with its properly torqued bolt-studs and nuts.NOTE 1: Polyethylene pipe flange adapters with slip on bolt rings are intended for use being bolted to each other or to be bolted to metal flanges having (primarily) Class 150 bolt hole patterns such as those presented in metal flange standards ASME B16.5, ASME B16.47 and AWWA C207.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 The use of gaskets and gasket selection are often an integral component of the flange adapter assembly. See the Plastic Pipe Institute Technical Note TN-38 for more information regarding HDPE flanged joints.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method is useful for establishing any effects that a joint restraint product has on the performance of PVC pressure pipe. This test method is designed so that success in all three parts of the test provides reasonable assurance that a joint restraint product may be used on PVC pipe at the full pressure rating and capacity of the pipe.4.2 Restrained joint test specimens shall be subjected to internal pressures that are equal to the minimum burst pressure requirements for the pipe alone. The minimum burst pressure requirements for some common dimension ratios are shown in Table 1. The minimum burst pressures for other dimension ratios of pipe produced from 12454 PVC Compound (that is, pipe conforming to Specification D1785) may be determined based on a hoop stress of 6400 psi (44.13 MPa).(A) The pressures listed approximate a hoop stress of 6400 psi (44.13 MPa). Some minor adjustments have been made to keep the test pressures uniform in order to simplify testing.4.3 Testing of restrained joint test specimens for 1000 h at the sustained pressure requirements indicates any tendency of the restraint to fail in the long term. The minimum sustained pressure requirements for some common dimension ratios are shown in Table 2. The minimum sustained pressure for other dimension ratios of pipe produced from 12454 PVC Compound (for example, pipe conforming to Specification D1785) may be determined based on a hoop stress of 4200 psi (28.96 MPa).(A) The pressures listed approximate a hoop stress of 4200 psi (28.96 MPa). Some minor adjustments have been made to keep the test pressures uniform in order to simplify testing.4.4 A cyclic surge pressure test of restrained joint test specimens determines the effect of the joint restraint product on the cyclic fatigue life of PVC pipe. This test method provides a means for quickly identifying any reduction in performance that might result from the combination of the joint restraint product and the pipe. The peak hoop stress shall be determined for the pipe based on the Vinson equation for a period of 1 000 000 cycles. The base pressure shall be one half of the peak pressure. The peak pressure requirements for some common dimension ratios are shown in Table 3. The peak pressure for other dimension ratios for pipe produced from 12454 PVC Compound (for example, pipe conforming to Specification D1785) may be determined based on a hoop stress of 1587 psi (10.94 MPa).(A) The peak pressures listed approximate a peak hoop stress of 1587 psi (10.94 MPa).AbstractThis test method describes a procedure for qualifying the performance of joint restraint products for use on PVC pressure pipe systems by evaluating the effect of the joint restraint product on the performance characteristics of PVC pipe during cyclic pressure tests and static pressure tests. This test method is useful for establishing any effects that a joint restraint product has on the performance of PVC pressure pipe. This test method is designed so that success in all three parts of the test provides reasonable assurance that a joint restraint product may be used on PVC pipe at the full pressure rating and capacity of the pipe. Pipe specimen length, minimum burst pressure test, sustained pressure test, and cyclic surge pressure test shall be performed to conform with the specified requirements.1.1 This test method describes a procedure for qualifying the performance of joint restraint products for use on PVC pressure pipe systems by evaluating the effect of the joint restraint product on the performance characteristics of PVC pipe during cyclic pressure tests and static pressure tests. The PVC pipe property values referenced in this test method are for the 12454 compound as described in Specification D1784 and a 4,000 HDB shall be obtained by categorizing the LTHS in accordance with Table 1 in Test Method D2837. That includes, but is not limited to, pipe produced in accordance with the following standards: Specifications D1785 and D2241, and AWWA C900.1.2 This test method determines the short-term performance of a joint restraint product on PVC pipe, which involves the testing of restrained joint test sections to the minimum burst pressure requirements of the pipe to determine quick burst performance.1.3 This test method determines the long-term effect of a joint restraint product on PVC pipe, which involves the testing of restrained joint test sections to the sustained pressure requirements of the pipe for a period of 1000 h.1.4 This test method addresses restraint products that are rated at the full pressure capacity of the PVC pipe on which they are used. There are joint restraint devices available that are not rated at the full pressure capacity of the pipe. While those products have proven acceptable and useful in the marketplace, this test method does not apply to those products.1.5 This test method determines the performance of a joint restraint product on PVC pipe subjected to cyclic pressure surges. The performance is compared to the baseline performance of pipe without joint restraint products established by Herbert W. Vinson.21.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

AbstractSpecification covers masonry joint reinforcements fabricated from cold-drawn steel wires. It specifies that joint reinforcement consists of longitudinal wires welded to cross wires. Wire used in the manufacture of masonry joint reinforcement shall be round. Masonry joint reinforcement shall then be assembled by automatic machines or by other suitable mechanical means that will assure accurate spacing and alignment of all members of the finished product. Longitudinal and cross wires shall be securely connected at every intersection by an electric-resistance welding process and then it shall be deformed. Tension, weld shear strength, and bend tests shall be performed on the samples. When corrosion protection of joint reinforcement has been provided, it shall be either zinc coated mill or hot-dip galvanized.1.1 This specification covers stainless steel and galvanized carbon steel masonry joint reinforcement fabricated from cold-drawn steel wire. Joint reinforcement consists of longitudinal wires welded to cross wires.1.2 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the specification.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This guide specifies a method to measure the surface and estimate the in-vivo material loss from the conical taper junctions, such as the femoral head/stem junction or adapter sleeve from explanted modular hip prosthesis, modular knee or shoulder joints. This guide is applicable to any articulating bearing material, stem material and conical taper size. The principles in this guide may be applied to other designs of taper junction, such as the modular stem/neck junction found in some hip joints.1.2 This guide covers the measurement of the surface and estimation of depth of material loss and volume of material loss and taper geometry using a Roundness Machine (1-4), Coordinate Measuring Machine (CMM) (5) and Optical Coordinate Measuring Machine (6, 7).2 Other measurement equipment may be used to measure the surface if the resolution and accuracy of the measurements are comparable with the instruments detailed in this standard. The measurement and analysis protocols should be based on those described in this standard.NOTE 1: The maximum depth of material loss is sensitive to the number and spacing of data points.1.3 The measurement techniques in this standard guide use measurements taken on the surface of the taper using stylus instruments. The material loss/corrosion mechanisms in the taper junction may lead to oxide layers or corrosion products deposited on the surface of the taper. These layers may lead to an underestimation of the volume of material loss.1.4 The explants may have debris or biological deposits on the surfaces of the taper junctions. These deposits will prevent the measurement of the actual surface of the taper junction and their effect on the measurement must be considered when deciding the cleaning protocol. Normally, the taper surfaces will be cleaned before measurements are taken.1.5 This standard may involve hazardous materials, operations and equipment. As a precautionary measure, explanted devices should be sterilized or minimally disinfected by an appropriate means that does not adversely affect the implant or the associated tissue that may be the subject of subsequent analysis. A detailed discussion of precautions to be used in handling human tissues can be found in ISO 12891-1. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 The compression resistance perpendicular to the faces, the resistance to the extrusion during compression, and the ability to recover after release of the load are indicative of a joint filler's ability to continuously fill a concrete expansion joint and thereby prevent damage that might otherwise occur during thermal expansion. The asphalt content is a measure of the fiber-type joint filler's durability and life expectancy. In the case of cork-type fillers, the resistance to water absorption and resistance to boiling hydrochloric acid are relative measures of durability and life expectancy.NOTE 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 These test methods cover the physical properties associated with preformed expansion joint fillers. The test methods include:  Property SectionExpansion in Boiling Water 7.1Recovery and Compression 7.2Extrusion 7.3Boiling in Hydrochloric Acid 7.4Asphalt Content 7.5Water Absorption 7.6Density 7.7NOTE 1: Specific test methods are applicable only to certain types of joint fillers, as stated herein.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers preformed pressure-relief joint fillers of the following two types made from cellular plastic materials having suitable compressibility and nonextruding characteristics.1.1.1 Type I, closed cell polyethylene, and1.1.2 Type II, open cell polyurethane.1.2 These joint fillers are intended for use in concrete pavements in full-depth joints measuring approximately 4.0 in. (102 mm) in width to relieve stress or avoid potential distress in adjacent structures or pavements.1.3 The values stated in inch-pound units are to be regarded as the standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers the material requirements for preformed polychloroprene elastomeric joint seals proposed for use in bridges. The multiple-web seals function by compression of the seal between the faces of the joint with the seal folding inward at the top. The seal is installed with a lubricant and is designed to seal the joint and reject incompressibles. The materials shall also conform to the physical properties prescribed herein such as tensile strength, elongation, hardness, ozone resistance, low-temperature recovery, high-temperature recovery, and compression-deflection properties.1.1 This specification covers the material requirements for preformed polychloroprene elastomeric joint seals for bridges. The seal consists of a multiple-web design composed of polychloroprene and functions only by compression of the seal between the faces of the joint with the seal folding inward at the top to facilitate compression. The seal is installed with a lubricant adhesive and is designed to seal the joint and reject incompressibles.NOTE 1: This specification may not be applicable for seals whose height is less than 90 % of its nominal width.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method can be used to describe the effects of materials, manufacturing, and design variables on the fatigue performance of metallic tibial trays subject to cyclic loading for relatively large numbers of cycles.4.2 The loading of tibial tray designs in vivo will, in general, differ from the loading defined in this practice. The results obtained here cannot be used to directly predict in vivo performance. However, this practice is designed to allow for comparisons between the fatigue performance of different metallic tibial tray designs, when tested under similar conditions.4.3 In order for fatigue data on tibial trays to be comparable, reproducible, and capable of being correlated among laboratories, it is essential that uniform procedures be established.1.1 This test method covers a procedure for the fatigue testing of metallic tibial trays used in partial knee joint replacements.1.2 This test method covers the procedures for the performance of fatigue tests on metallic tibial components using a cyclic, constant-amplitude force. It applies to tibial trays which cover either the medial or the lateral plateau of the tibia.1.3 This test method may require modifications to accommodate other tibial tray designs.1.4 This test method is intended to provide useful, consistent, and reproducible information about the fatigue performance of metallic tibial trays with unsupported mid-section of the condyle.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers an elastomeric-type one component, hot-applied, jet-fuel-resistant concrete joint sealant, resistant to weathering, for use in sealing joints and cracks in Portland cement concrete highway and airfield pavements in critical areas subject to jet fuel spillage.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in .

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This guide covers the test method selection and associated test specimen design to produce test data to be used for typical bolted joint analyses. These test methods are limited to use with multi-directional polymer matrix composite laminates reinforced by high-modulus fibers. This standard is intended to be used by persons requesting these test types.1.2 Test requestors designing these specimens need to be familiar with the referenced Test Method and Practice standards, CMH-17 Volume 3 Chapter 11, and the stress analysis methods that will use the resulting design data.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This specification covers one type of thermoplastic, hot-applied, jet-fuel-resistant joint sealant for use in sealing joints and cracks in pavements.1.2 Units—The values stated in SI units are to be regarded as standard. The values in parentheses are for information only. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance to the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precaution statements are given in the Appendix.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
86 条记录,每页 15 条,当前第 2 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页